
Received June 25, 2019, accepted July 6, 2019, date of publication July 10, 2019, date of current version July 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927895

YAFS: A Simulator for IoT Scenarios
in fog Computing
ISAAC LERA , CARLOS GUERRERO , AND CARLOS JUIZ , (Senior Member, IEEE)
Department of Mathematics and Computer Science, University of the Balearic Islands, 07122 Palma, Spain

Corresponding author: Isaac Lera (isaac.lera@uib.es)

This work was supported in part by the Spanish Government (Agencia Estatal de Investigación) and in part by the European Commission
(Fondo Europeo de Desarrollo Regional) under Grant TIN2017-88547-P (MINECO/AEI/FEDER, UE).

ABSTRACT Fog computing is a paradigm that extends the cloud to intermediate network devices with
computational and storage capacities. This allows the execution of applications closer to edge devices and
end-users by allocating services in those intermediate devices. The placement of those services has an
influence on the performance of the fog architecture. We propose a fog computing simulator for analyzing
the design and deployment of applications through customized and dynamical strategies. We model the
relationships among deployed applications, network connections, and infrastructure characteristics through
complex network theory, enabling the integration of topological measures in dynamic and customizable
strategies, such as the placement of application modules, workload location, and path routing and scheduling
of services. We present a comparative analysis of the efficiency and the convergence of results of our
simulator with the most referenced one, iFogSim. To highlight the YAFS functionalities, we model three
scenarios that, to the best of our knowledge, cannot be implemented with current fog simulators: dynamic
allocation of new application modules, dynamic failures of network nodes, and user mobility along with the
topology.

INDEX TERMS Complex networks, fog computing, Internet of Things, simulator.

I. INTRODUCTION
Cisco coined the term ‘‘fog computing’’ as an extension
of cloud computing, placing computer services closer to
the users [1]–[4]. Approximately speaking, some network
devices, called fog nodes, perform computational tasks or
data storage functions in the same way as cloud entities. This
novel application placement has some advantages, such as
the reduction of latency time, a lower network bandwidth
utilization, a reduction in the cloud costs, and an increase
in the reliability and fault tolerance through the geographical
distribution of devices.

Another related concept similar to fog computing is edge
computing [5]–[7]. The small difference between them lies in
the localization of fog nodes. In edge computing, the nodes
are at the edge of the network, near the users. In the context
of the Internet of Things (IoT), the role of fog computing is to
leverage functionalities such as on-demand scalability, real-
time interaction, better security and privacy management,

The associate editor coordinating the review of this manuscript and
approving it for publication was Weiguo Xia.

battery power savings, streamlining of communications,
and rapid service delivery, among others [1], [6], [8]–[11].
Figure 1 shows the topology of a network with typical en-
routing entities in comparison to network nodes with compu-
tational and storage capabilities in the fog computing model.
The requests are generated from the endpoints / things layer
and are routed to services deployed in upper-layer devices.
These services can be allocated in several intermediate nodes
or in the cloud. The placement problem of software resources
for fog computing or edge computing is an NP-hard problem
that consists of the selection of the optimal network entity
to deploy a user application. There are some constraints and
optimization factors that influence this problem, such as the
user location, hardware and software features of the network
entities, link characteristics (e.g., propagation, utilization,
and bandwidth), user requirements, application decompo-
sition (e.g., containers, microservices, and serverless func-
tions), QoS, energy, and cost, among others.

These factors affect the dynamical evolution of the user
movement, link failures, network congestion, and applica-
tion popularity, among other aspects. One way to evaluate

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 91745

https://orcid.org/0000-0002-2826-5970
https://orcid.org/0000-0003-2969-0597
https://orcid.org/0000-0001-6517-5395


I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

FIGURE 1. Relationships in a fog computing model.

placement solutions is through simulation. Simulators are
enabling tools for modeling, analyzing and evaluating the
diversity of policies and configurations.

In this paper, we present a discrete-event simulator focused
on, but not restricted to, fog environments called YAFS
(Yet Another Fog Simulator). YAFS is designed to analyze
the design of applications and incorporates strategies for
placement, scheduling and routing. We compare the YAFS
characteristics with that of the iFogSim [12] simulator as a
reference. iFogSim is the most widely used fog simulator,
an extension of the well-known CloudSim [13] simulator.
YAFS includes more functionalities than current simula-
tors for modeling IoT scenarios. We highlight the following
points:

I) Network: a graph or network vision allows the modeling
of the communication links among machines, end-devices
and users. We can obtain useful measures for our custom
strategies by analyzing non-trivial topological features of the
graph, such as vulnerable regions to random failures, user
community distribution, efficient routing policies, and so on.
Complex network theory [14]–[16] embraces all these studies
that are applied to model real systems: computer networks,
technological networks, brain networks and social networks.
In the literature, complex networks are used to model rela-
tionships of data centers [17], virtual machine allocation [18],
fog colonies [19], load balancing mechanisms [20], etc.
We can take advantage of extensively tested implementations
to use them along the custom simulator policies, for example,
we can import CAIDA [21] and BRITE [22] topologies.
In our implementation, any network entity or link can be
created or removed during the simulation following custom
temporal distributions and with custom tags to allow an effi-
cient and flexible definition of scenarios.

II)Workload sources: each workload source represents the
connection of a user or an IoT sensor or actuator that demands
a service. Each source is associated with a network entity
and generates requests according to a custom distribution.
The workload sources can be created, changed or removed
dynamically enabling the modeling of the user movements in
an ecosystem.

III) Customized Placement, scheduling and routing algo-
rithms: these algorithms are defined by the user. The place-
ment algorithm is invoked in the initialization and runs along
with the execution according to a personalized distribution.
The routing algorithm chooses the path that connects the
transmitter and the receptor, and the scheduling algorithm
chooses the application that runs the task. The scheduling
and routing algorithms are defined in the same manner since
the path selection depends on which application is chosen.
The existence of the scheduling algorithm allows choos-
ing between different modules in case of scaling policies.
By default, the simulator includes both implementations:
a static placement and the selection of the minimum
path between two entities where the application is
deployed.

IV) Custom processes: personalized functions can be
invoked at runtime to provide flexible implementations of
real events such as the movement of the workload sources,
generation of network failures, and specific data collection
using third-applications such as Grafana [23] (an open plat-
form for analytics andmonitoring of computer infrastructures
and services).

V) Post-simulation data analysis: YAFS performs auto-
mated CSV-based logging of two types of events: workload
generation and computation, and link transmissions. The
results are both analyzed post-simulation and provided to
the user. This generates less overhead, avoids repeating the
simulation to re-analyze other indicators, and enables the
shareability of raw results. YAFS includes functions to obtain
metrics such as network utilization, response time, network
delay, and waiting time, etc. Using CSV dumps, user can
implement complex analyses using R, Python or another
language.

VI) JSON-based scenario definition: YAFS supports the
importation of the scenario definition from JSON-format
files. It enables the use of third-party tools that generate
scenarios in a common JSON format; in addition, non-expert
developers can use basic functionalities of the simulator.
Thus, it is more user-friendly and a better starting point to
understand the simulator. However, YAFS API enables more

91746 VOLUME 7, 2019



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

modeling possibilities than the JSON-based syntax such as
for example, the modeling of dynamic scenarios.

YAFS is developed in Python following the style guide
PEP8 [24]. It is available under MIT license in a code repos-
itory1 with detailed documentation, a tutorial and several
examples.

To sum up, the contribution of this paper is the design of a
highly customizable simulator and the design of JSON-based
files for analyzing mobile IoT scenarios under the fog and
edge computing paradigms.

This paper is organized as follows: Section 2 describes
the state the art of the fog and cloud computing sim-
ulators. Section 3 includes the justification of the use
of complex networks to model the infrastructure net-
work. Section 4 describes the design and some details of
the implementation of each component of our proposal.
Section 5 includes three cases studies (involving allocation of
modules, failure behavior of devices, and movement of users)
and presents a comparative study of results with iFogSim in
terms of performance and convergence.

II. RELATED WORK
Our solution is focused in the design of fog computing
simulators. There are different simulators for several types
of distributed environments such as cloud, grid, and fog
edge. We know of four specific simulators regarding the
topic of fog computing: FogTorch [25], EmuFog [26], Edge-
CloudSim [27], FogNetSim++ [28] and iFogSim [12].
We first analyze some common features of these simula-
tors and then provide more specific features of all of them
individually.

We classify the simulators considering the following crite-
ria, which, from our point of view, are essential for realistic
modeling of fog scenarios. I) The first criterion involves the
structure of the topology. The topology allows us to repre-
sent the infrastructure of the network. EdgeCloudSim and
IFogSim use a tree-based structure. In contrast, FogTorch,
EmuFog, FogNetSim++ and YAFS use a graph structure.
In addition, YAFS supports the definition of subgraphs within
a topology. Subgraphs can be used to represent isolated
regions or fog colonies [19]. The generation of topologies
is a complex and hard task due to the number of elements
and connections. There are definitions of topologies such
as BRITE and CAIDA topologies. These formats are sup-
ported by EmuFog and YAFS but not by the other simu-
lators. II) The second criterion is related to the coding of
the scenario. Existing fog simulators include an API where
the characteristics of the scenario are defined; YAFS also
supports the definition of the scenario through JSON-based
files. The topology can also be defined using this syntax.
FogNetSim++ has a graphical interface. III) The third crite-
rion involves the characteristics of the results. If complex sce-
narios are designed with customizable policies, it is necessary
to record all the events of the simulator in files. Thus, users

1https://github.com/acsicuib/YAFS

can perform complex analysis of these records to find specific
indicators. EdgeCloudSim, FogNetSim++ and YAFS record
these data to allow post-simulation analysis. IV) The fourth
criterion involves the capability to perform changes in the
fog scenario during the simulation. The modeling of real-
istic scenarios must include changes in different strategies.
EdgeCloudSim and FogNetSim++ support changes repre-
senting the movement of users in the infrastructure. Only
YAFS supports dynamic scenarios in the next strategies:
placement, path routing, service orchestration and workload
or user movement. V) Finally, the last criterion is the pro-
gramming language. Most of them are implemented in Java,
FogNetSim++ in C++, and YAFS uses Python.
We summarize these five comparative criteria in Table 1.

The nomenclature used in the Policy column represents the
policy that can be customized: A - stands for allocation or
placement; R - stands for path routing, O - stands for service
orchestration, andW - stands for workload or user movement.
Dynamic Policies column indicates the previous strategies
that the simulator can execute dynamically during execution.

After a global analysis of the simulators, we also present a
more specific description for each of them independently.

FogTorch [25] uses Monte Carlo simulations to determine
the best allocation for an application through QoS indica-
tors such as latency, bandwidth, cost, and response time.
This simulator addresses the application allocation problem.
Our approach simulates the whole ecosystem only where
the allocation is one of the available inputs of the simu-
lation. In other words, FogTorch optimizes the deployment
of applications under QoS restrictions, and YAFS integrates
this optimized allocation values to obtain simulated metrics.
Brogi et al. defined an application as a set of triplets of soft-
ware components and interactions among components with a
QoS profile. They used Monte Carlo simulations to compute
the eligible deployments of software components. They also
presented a fire alarm IoT application as a case study with
three components: a fire manager (an actuator to extinguish
the fire), a database system, and a machine learning engine.
The IoT infrastructure was based on three fog nodes, two
cloud entities and nine network links among them.

EmuFog [26] is a set of scripts to transform a set of initial
configurations (network topology and placement criteria) into
the input of the MaxiNet [29] simulator. It uses a graph
representation to define the network topology. The authors
implemented some functionalities to simplify the process of
selection of fog nodes in regards to the topological features
of the graph. Our simulator also implements this process.
We delegate this type of computational processes in a com-
plex network library to obtain topological features that the
user can integrate into the topology. EmuFog application
representation comes from Dockers,2 a container platform
that encapsulates an application in a stand-alone package. The
evaluation uses three graph types (the Albert and Barabasi
model [30], and real-world topologies from CAIDA [21] and

2https://www.docker.com/

VOLUME 7, 2019 91747



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

TABLE 1. Comparative table of fog simulators.

from the BRITE tool [22]) for representing the network. The
authors analyzed the edge-nodes and the most suitable place-
ments in the evaluation. From our point of view, however,
the type of application used and the relationships among
containers is not clear.

EdgeCloudSim [27] is simulator based on CloudSim [13],
which is one of the most referenced simulators in the field
of cloud computing. Sonmez et al. introduced functionalities
such asmobilitymodels, network linkmodels and edge server
models to represent more realistic scenarios. Thus, new addi-
tional results were provided such as the LAN delay, number
of failed tasks due to mobility and the average number of
mobile clients in a specific location. They presented a sce-
nario with three configurations: one tier, two tiers, and two
tiers with an edge orchestrator. The edge orchestrator entity
controls the selection of the tier in each possible task execu-
tion. This simulator incorporates new functionalities relative
to the original but is restricted in the taxonomy definition and
how the mobility is defined. The type of results is also limited
to the CloudSim version.

FogNetSim++ [28] is an extension of OMNet ++.
It inherits some functionalities of the original simulator:
a graphical environment, traceability of the results at the
end of the simulation, implementation of different network
protocols, etc. The modeling of the ecosystem is based on
four types of entities: sensors, mobile devices, fog nodes
and broker nodes. It is possible to implement dynamic man-
agement of the nodes, different types of movement on the
nodes and scheduling policy. The planning policy is carried
out by the broker that allows the distribution of petitions
among the nodes. The services of the nodes are modeled
as M/M/1 or M/M/c queue. In YAFS, the service of a node
follows an M/M/1 policy, but a node can have multiples
deployed services. The movement of entities is based on user
implementations such as changing the links of the network,
or the location of the users or the characteristics of the nodes
as geo-location attributes.

iFogSim [12] is a CloudSim extension that supports the
management of edge-network entities and the evaluation of
allocation policies. The infrastructure is defined by a set of

entities: fog devices (or fog nodes), sensors, tuples (such as
a network link) and actuators. The application is modeled as
a directed graph with modules (representing computational
resources), edges (a data dependency between application
modules), and loops (defining a sequence of edges that should
be monitored along the simulation to compute the response
time.

In the article, the authors present two placement strategies
that we describe in detail in the evaluation section: cloud-
only placement and edge-ward placement. They introduce
the simulator with two case studies: a latency-sensitive online
game (namely, the EGG Tractor Beam game) and intelligent
surveillance through distributed camera networks. Based on
the iFogSim simulator, we use the application model in our
simulator, introducing new improvements in the API, and we
compare our results using the first case study and the two
placement strategies as explained in the article.

III. YAFS ARCHITECTURE
YAFS uses a generic library for the generation of discrete-
event simulation scenarios called Simpy.3 Simpy is a robust
and stable discrete-event simulator (DES) implementation
that contains functions for the definition of processes (active
components) and shared resources (such as network links
and queues). It performs the execution of the simulation in
three modes: as fast as possible, in real time, or manually
stepping through events. It can also halt the simulation in case
of lack of interaction or with a fixed step size. YAFS relies in
the functionalities of Simpy to control the atomic processes
behind a fog domain: the transmission of workloads among
network links, the computation of processes in fog nodes, and
others issues that we describe below.

YAFS is defined by six main classes: core, topology, selec-
tion, placement, population, and application. Figure 2 shows
the relationships among them. Core class integrates the rest
of the fog scenario definitions and manages the simulation
execution controlling the cycle of life of processes, includ-
ing the customized policies: selection, placement, population

3https://simpy.readthedocs.io

91748 VOLUME 7, 2019



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

FIGURE 2. The YAFS architecture is defined by six main classes: Topology,
Core, Application, Selection, Placement, and Population.

and personalized controls. The main element of the Core
class is the Topology. The topology structure is accessed by
other classes through the control of the Core class. Simula-
tion processes such as Selection, Placement, Population are
integrated into the Core class to provide orchestration and
selection of processes, allocation of software modules in the
entities of the structure; and allocation and characterization of
workloads, respectively. As shown in Fig. 2, the classes with
a white lambda on a black circle symbol can interact dynam-
ically along the simulation execution. Core class gathers
events (such asmessage transmission andmessage execution)
and stores them in a raw format. Stats and Metrics classes
implement several functions to compute common measures
such as the average response time, link latency, and resource
utilization.

In the following sections, we examine the topology and
entity modeling, the application model, the internal structure
of the DES processes and the generation of the results. API
documentation and a tutorial are available on-line,4 providing
further detail.

A. TOPOLOGY AND ENTITY MODELLING
All network intermediate entities are modeled as a set of
nodes of a graph interconnected via network links, i.e., the
edges. Thus, network elements, fog nodes, clusters or data
centers are nodes and the network links are edges. This
graph-based perspective allows the applicability of complex
network theory. We integrate the NetworkX [31] library in
our simulator. NetworkX is a well-known python library
with several algorithms to compute measures such as degree,
centrality, clustering, assortativity, communities, communi-
cability, flows, isomorphism, and similarity. In addition, this
library can import CAIDA [21] and BRITE [22] topologies,
and it supports graph formats such as JSON, GML, GEXF,
Pickle, GraphML, and Pajek.

4https://yafs.readthedocs.io/en/latest/

Listing 1. Definition of two examples of fog nodes using a JSON-based
representation.

The mandatory attributes to define a fog node are an
identifier (ID), the number of instructions performed per
unit of time (IPT) and the memory capacity (RAM). Users
can include other attributes to define the topology entities
such as: storage capacity, power, network adapter, and so on.
In listing 1, we include two JSON-based example definitions
of nodes: one with a range of power consumption and a
coordinate value and one that contains only the mandatory
attributes. YAFS supports a flexible definition of entities
in the same scenario. Using customized attributes, we can
represent logical relationships such as virtualization, contain-
ers, microservices, and serverless functions using nodes and
vertices.

The definition of link attributes is similar. A network link
has twomandatory attributes: bandwidth (BW) and link prop-
agation (PR), and the user can include more attributes.

Finally, a simulation contains a unique topology class.
As mentioned, this class is a graph-based representation
where a determined number of applications and their cor-
responding policies are deployed. That is, each application
has a unique policy of allocation of resources (placement),
a policy of selection and orchestration of services (selection),
and a variation of the workload (population). Furthermore,
we can deploy customized controls that dynamically interact
with the application and the simulation variables (such as
failure generation or to improve the computational capacity
of a node).

B. APPLICATION MODEL
The application model is the same than in iFogSim [12] and is
based on a distributed data flow (DDF) [32]. An application is
defined bymodules that run services andmessages (or depen-
dencies) among modules. Thus, a DDF is represented with a
directed acyclic graph where nodes are modules that perform
one action on the incoming data and edges denote interop-
erability between modules. This application representation
enables the partitioning and scaling of an application, which
is useful for real program models such as microservices [33]
and serverless [34] paradigms.

We adapted the application definition with regard to the
iFogSim approach to complying with our design principles:
independence of the results and ease of export and reuse
functions. This fact is reflected in each definition phase of
an application: modules, dependencies, messages and results.
The mandatory attributes of a message are instructions

VOLUME 7, 2019 91749



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

FIGURE 3. Three application types with a simple message passing, a loop message and a broadcast message,
respectively.

and bytes. The instructions affect the service time, and the
bytes affect the transmission time.

In YAFS, all types of modules are defined with the same
methods. iFogSim authors use the term dependency to rep-
resent the relationship between modules, and these mod-
ules do not start the execution until they receive a message;
instead, we use the term message. These messages can be
used for other applications that have the same modules. The
transfer of messages indicates how to transform a type of
input message into another output message. In YAFS, all
transfers are defined, including the generation of messages
in sensors or the reception in actuators and the generation
within modules (periodic messages). The decision to trans-
mit a message within a module is also implemented, with
two methods: fractional selectivity and broadcasting. The
latter allows message transmission to all replicated modules.
Finally, in YAFS, the response time is obtained independently
of the declaration of loops (an internal control of iFogSim
for monitoring tasks of sequence of dependencies between
modules of an application), i.e., in iFogSim, if a loop is
not declared before the simulation, the execution times of
a sequence of dependencies between modules cannot be
measured.

To understand the differences between iFogSim andYAFS,
we implement the application used in the first case study
of iFogSim: the EGG Tractor Game (Listing 2). The game
consists of three modules: client, concentration calculator
and coordinator, performing processing of the messages gen-
erated in the EGG sensor ; some results are visualized in
the Display actuator. The modules are defined in lines 9-11;
modules that will be workload sources or simple sensors
are defined as sources and sinks. They are necessary only
to define the application. The messages are defined in
lines 11-13. The following attributes are required: name,
module source, module destination, instructions, and bytes.
Finally, the remaining lines define the transmissions. This is
where we define how a message is transformed into another
and how a message is sent between modules (through a dis-
tribution, a selection or a broadcast process). The placements
of workloads (source entities) are defined in the population
policy.

Our implementation includes additional types of applica-
tions that can bemodeled and their interactionswith thework-
load generators, or users, with regard to other simulators.

Listing 2. Definition of EGG Game application presented in iFogSim [12]
using our API.

Figure 3 shows three application types. Each application is
set up by software modules represented with circles. Appli-
cation 0 presents a hierarchical structure where the messages
(identified with Mij) trigger other messages. In the example,
post-execution ofM01 triggersM12 andM13. In application 1,
we can observe a self-message and an interaction with the
user from other module. In the last case, application 2,
there is a broadcasting message (Mb1) that reaches all
S1-module deployments. Each S1-module returns a message
that is addressed by S0-module and finally returns a response
to a specific user. This last feature enables the return of
responses to the initial claimant.

We include a supplementary PDF document which con-
tains several examples of applications. In one of them,
we define an application based on the structure of applica-
tion 0 (Fig. 3) and the correspondent scenario (population
policy, allocation policy and infrastructure) using a specific
JSON-based syntax. The use of JSON files provides a com-
mon framework for the definition of Fog scenarios where

91750 VOLUME 7, 2019



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

Listing 3. Declaration of two population policies: one static (popA) and
the other dynamic (popB).

non-expert developers can easily design experiments. This
document is available at http://ieeexplore.ieee.org.

C. DYNAMIC POLICIES
The Selection, Placement and Population classes dynam-
ically generate the events in the scenario. The first class
chooses the entity that performs the execution of application
modules; hence, it routes the workload. The Placement class
determines the allocation of each application module. The
Population class allocates the workload generators in the
network entities. These classes possess two main interfaces:
an initialization function and a function invoked according to
a customized temporal distribution. The initialization func-
tion prepares the allocation of modules and workloads on
topology entities.

To illustrate these type of processes, we describe the popu-
lation definition where we map workload generators in the
entities of the infrastructure. This procedure requires three
steps. First, we need to choose the type of message that is gen-
erated from the workload sources. The messages are defined
in the Application class, and they are requested to perform the
execution of application modules. Second, we have to define
the temporal distribution. Finally, we have to associate how
many of these generators we wish to have in the nodes. We
have included an example of population criteria in Listing 3).
Lines 1 and 2 define two temporal distributions. The first one
starts at 3000 time units, and from that point in time, it triggers
an activation every 300 time units. The second one triggers an
activation every 10 time units. Line 4 generates an instance
of a predefined extended class of Population. In application
A, there are two types of modules: workload sources and
workload sinks (similar to sensors and actuators). Thus, Lines
5 and 6, through JSON-based syntax, define the allocation
of each sink module (in this case, we incorporate all sink
modules, and we duplicate the number in the same entity),
and the allocation of each workload source with a distribution
and a type of message.

We can extend thePopulation class tomodel more complex
scenarios (Lines 8-11). In this sense, the new instance (Line 9)

Listing 4. Structure of a population class with three mandatory functions:
init, initial_allocation and run.

of an extended Population operation follows the distribu-
tion defined in Line 1. This DES process starts generating
workload sources at a certain time point, after which it is
activated every 300 time units. In each activation, it generates
a new workload source with the characteristics defined in
Line 11, and it is assigned in each entity defined in the array
(top20Devices). Sink modules are generated in the initializa-
tion phase. A simplified version of this Evolution class is
shown in Listing 4). In these types of processes, there is a
mandatory function called initial_allocation and, optionally,
a function called run that is invoked dynamically according
to the distribution. Internally, functions defined in the Core
class are used for our modeling, such as deploy_source or
deploy_sink. Note that the sim variable is the instance of the
simulation. We can control the topology and the rest of the
DES processes, together with the simulation execution. This
variable is created in the Core class. The rest of the classes
(selection, placement and customized processes) present a
similar structure and behavior.

D. RESULTS
There are two types of events recorded (namely, task exe-
cutions and network transmissions), but users can record
specific metrics with customized DES processes. The results
are stored in two CSV files.

When a node performs the work associated with a mes-
sage, the simulator records the following attributes: id,
type, app, module, message, DES.src, DES.dst, TOPO.src,
TOPO.dst, module.src, service, time_in, time_out, time_emit,
time_reception. Specifically, id is an incremental integer
value that remains constant during message propagation or
transformation in other messages of the application. This
approach allows controlling when an application partitioned
in modules ends the execution of its complete service. The
attribute type identifies the type of module (computational
or sink). The attribute app identifies the application (the
name attribute). module identifies the application module
(the name attribute) that performs the service. message iden-
tifies the message (the name attribute). DES.src and DES.dst
are the identifiers of the DES processes that send and receive
the message, respectively. TOPO.src and TOPO.dst are the
identifiers of the topology entities where the modules are

VOLUME 7, 2019 91751



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

FIGURE 4. Timestamps generated by the discrete-event simulator and
post-computed times in the fog node computation of a message.

Listing 5. Fog node computations recorded in a CSV file for subsequent
analysis of the results.

deployed. module.src identifies the application module that
sends the message. The service attribute can have a None
value (if the message record comes from a workload source)
or a numerical value corresponding to the service time.

Figure 4 shows the four timestamps involved in the trans-
mission of a message from the source to the destination entity
where the software module performs the action. The next
timestamps are relative to the simulation time because it is a
discrete-event simulator. The label time_emit is the value that
represents the emission time of a message in a module source.
The label time_reception represents the recorded timewhen a
message arrives to the destination module.When the message
arrives, it is enqueued; finally, we record the entry and the
exit of the service (time_emit and time_out, respectively).
The service time is the division of instructions (message
attribute) between instructions per time (entity attribute).
These times are used to compute useful measures such as
the latency, waiting time, response time and total response
time (see computed times in Fig. 4). We show a sample of
those records in Listing 5. Using the timestamps entries of
the first requests (Listing 5), timein is 104.005, timeout is
105.9994, timeemit is 100.0, and timereception is 104.0005;
we compute the latency as 104.0005-100.0, the waiting time
as 104.005-104.005, the service time as 105.9994-104.005,
the response as 105.9994-104.005, and the total response as
105.9994-100.00.

In a network transmission, YAFS records the following
attributes: id, type, src, dst, app, latency, message, ctime, size,
buffer. Here, id, type, app, andmessage take the same values
as mentioned previously. src and dst are the identifiers of the
topology entities that send and receive the messages. ctime is
the simulation time when the action is performed. size is the
size of the message. Finally, buffer is an integer value that

Listing 6. Network link transmissions are recorded in another CSV file.

Listing 7. Analysis of the simulation results.

represents the number of messages in the whole network that
are waiting for a link service. Consequently, a link can send
only one message at a time, and messages have to wait for
unused slots. This value is an indicator of network saturation
and is updated in each record. In the case shown in Fig. 4,
the transmission of the message from the workload source to
the fog node generates three network transmission records.
We show a sample of these types of records in Listing 6.

We have implemented some commonmethods (in the Stats
class) to obtain more complex measures using the Pandas
library [35]. Pandas is an open source library with several data
analysis tools. To illustrate this data analysis, we include the
next example in Listing 7. The first approach follows the idea
of sequences defined in iFogSim. From a sequence of mes-
sages (line 2), the showResults function provides the same
results as iFogSim (line 4). In addition, we can perform more
complex analysis. For example, we can compute the average
latency each 300 units of time. To obtain these values, we use
the Pandas time series functionalities to sample the records in
that time period and to apply the average function on latency
values (lines 6-8), where df (a dataframe) contains the CSV
data.

IV. EVALUATION
In the first section, we compare YAFS and iFogSim simu-
lators in terms of performance and results using an appli-
cation case defined in iFogSim [12]. In the second section,
we analyze the convergence of both simulators using the same
experiments.

It is important to note that the results are not equal between
both simulators, although we try to use similar settings. The
definition of attributes is different in both simulators. These
cases are the following: I) iFogSim uses the measure of MIPS
in its computational devices. YAFS uses IPT (instructions per
time. Both measures are related but some MIPS possible val-
ues in iFogSim are not clear. II) In iFogSim, the attributes of
a link are included in the fog node using terms such as upBW
and downBW, and there is another latency value in the con-
nection between modules (i.e., eegSensor.setLatency(6.0)).
In our case, the BW is defined in the link and has the
same value in both directions. In addition, we define the

91752 VOLUME 7, 2019



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

FIGURE 5. Network topologies with 10 fog devices (left figure) and 18 fog
nodes (right figure). The large green node represents the cloud entity,
pink nodes are the proxies, orange nodes are the gateways or fog devices,
and small green nodes are client devices with one sensor (purple) and
one actuator (blue).

propagation time, which is not included in iFogSim III) In
iFogSim, a message has attributes such as tupleCPULength
and tupleNwLength, corresponding to the number of millions
of instructions and bytes, respectively. In any case, temporal
distributions are the same in the experiments, and we try to
use similar values in the previously described attributes.

A. COMPARISON WITH IFOGSIM
We use the first case study presented in the iFogSim paper
(namely, the EGG Tractor Beam game) for the compari-
son between both simulators. This application consists of
3 modules: client, concentration, and coordinator, and the
experiment deploys the modules in a hierarchical three-based
topology with a cloud entity that is linked to a gateway
where all fog devices are connected. The network can be
scaled from the gateway device generating several subgroups.
Figure 5 represents an example of two topologies with 10 and
18 gateway subgroups.

We analyze two different placement strategies: a cloud-
only placement (cloud policy) where all modules are
deployed in the cloud entity and an edgeward placement
(edge policy) where the modules are deployed in fog devices
(orange nodes in Fig. 5). Both strategies are explained in
the iFogSim paper. From the simulation, we analyze the
following data: execution time and response time. In addi-
tion, we vary the number of fog nodes: 4, 8, 12 and 16.
The simulation is executed in a machine with 8 i7-cores
running at 3.745 GHz with 8 GB RAM. Because of the stable
convergence of both simulators, as described in Section 4.2,
we performed each experiment only once.

Figure 6 shows the execution time in both policies with
regard to the increment of fog nodes. Blue lines are the results
of iFogSim and green lines, YAFS. Circle marks correspond
to cloud policy and star marks to edge policy. At first glance,
the behavior of both simulators is quite similar, but we can
appreciate some differences: I) In the cloud policy, a greater
number of transmissions must be made since all messages
go through more network links to compose the cloud entity.
This volume of traffic possibly generate a saturation issue
in the network that affects the iFogSim runtime; II) edge
policy generates more application modules; there are more

FIGURE 6. Execution time comparison between cloud and edge policies
with a different number of gateways: 4, 8, 12 and 16.

FIGURE 7. Number of messages enqueue (waiting) by network saturation
using YAFS with cloud policy in increments of fog devices (4, 8,
12 and 16).

DES processes to control each module, and this fact slightly
affects the YAFS runtime. An increment of the simulation
runtime is reasonable as more modules are controlled; how-
ever, the saturation of the simulated system not should affect
the simulator itself.

The network is saturated with the parameterization of the
cloud policy experiment. The saturation is greater when there
are more network devices and is proportional between dif-
ferent gateway subgroups. In Fig. 7, we represent the total
number of messages waiting for the service in each level
of fog nodes using YAFS. iFogSim does not provide this
measure.

Another comparison is the latency time of the application.
In this experiment, the latency is calculated as the sum of
transmissions among the three modules, and the response
times is included: the EGG sensor ↔ client module, client
↔ coordinator module and coordinator ↔ client module.
A substantial difference between the simulators is the need
to indicate the sequence of messages in iFogSim before sim-
ulation execution. In YAFS, this step is not necessary; those
latencies are calculated post-simulation.

With the edge policy, the clients and fog devices entities
always have the same network distance, and the response
time has to be constant and independent of the number of
fog nodes. Table 2 shows that the convergence of the latency
time is better in YAFS. Note that the seed of the random
numbers is always the same in each increment of gateways

VOLUME 7, 2019 91753



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

in both simulators. This seed changes only with the number
of messages and the simulation time.

With the cloud policy, the coordinators are allocated in
the cloud entity. Subsequently, more messages are trans-
mitted across the network and must pass through the same
link. In both cases, the latency presents an exponential trend
(Table 2). The parameterization avoids the network saturation
in the iFogSim execution with 4 fog nodes.

B. CONVERGENCE
We analyze the convergence of YAFS using the same example
of iFogSim as in Section 4.1. In this case, we use the edge pol-
icy since it is a stable configuration of the system.We run both
simulators 50 times with a simulation time of 10,000 units in
each fog node configuration (4, 8, 12 and 16) to compute the
latency time.

In this experiment, two factors change the precision of
the latency time: the simulation time and the number of fog
nodes. The first factor exhibits coherent behavior in simu-
lation experiments but in this case is constant. The second
factor, the number of fog nodes, affects the number of trans-
mitted messages; then, it statistically increases the number of
samples. We can expect a reduction in the variance in each
fog node increment. In Table 3, we include the numerical
values (mean, variance, minimum, and maximum) of each
simulator. We observe the reduction of the variance in each
experiment. The divergence between the different ranges may
be due to differences in the configuration of the experiment
in each simulator, but YAFS is slightly more stable.

V. THREE COMPLEX SCENARIOS
In a second experimental phase, we highlight selected YAFS
features, and we implement three dynamic IoT scenarios:
allocation of new modules, failures on the infrastructure, and
user mobility.

The first step is the definition of the network infrastructure
(or topology). To illustrate the use of complex networks,
we use the Graph Stream Generator library [36] to create
a Euclidean random graph [37]. This topology is the same
for all three experiments (with a size of 400 nodes and
2242 edges) where the links have the same propagation speed
(1 time unit) and fog nodes can serve an unlimited number
of modules. We choose this type of graph since such graphs
represent social relationships among individuals and have a
high connection degree.

The application consists of two modules: senders and
receivers, and it has only one type of message. In this way,
complex data analysis is avoided in the experiment. Initially,
we randomly allocated 100 senders in the topology, and the
number of receivers depends on each case study. Each sender
generates a message each 10 time units, and the service
time of the receiver is 0.0. Thus, the response time is equal
to the latency time. To ensure accurate replication of the
experiments, the seed of the random number generator is the
same for all the experiments.

FIGURE 8. First scenario: Dynamic allocation of modules.

In these three experiments, the results (latency times) are
average values from the simple sequence between a sender
and a receiver. The computation is similar to lines 6-8 from
Listing 7, i.e., the value is the average aggregation of a set of
values of a time period. The selection policy is based on the
minimal path distance between a sender and a receiver.

We allocate the receiver modules selecting the nodes with
the biggest betweenness centrality of a graph. The between-
ness centrality is a measure of the relative importance of a
node in the path between other pairs of nodes. A way of com-
puting the betweenness centrality of a node is counting the
number of shortest paths that travels through it [38]. Nodes
with high betweenness centrality values facilitate or inhibit
the communication between other nodes in the network. The
goodness-of-fit evaluation of this measure as an indicator to
select a network device such as a fog node is not part of this
study, but some analyses have been performed in previous
studies [39]. All three experiments and results are available
in the code repository in the example folder .5

5https://github.com/acsicuib/YAFS/tree/master/src/examples

91754 VOLUME 7, 2019



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

TABLE 2. Latency time with two different policies: Cloud and edge varying the number of fog nodes and the simulation time.

TABLE 3. Convergence of YAFS and iFogSim using 50 samples with an edge policy configuration and different number of fog nodes with 10,000 time
units of simulation.

A. DYNAMIC ALLOCATION OF MODULES
In the first scenario, we scale the number of receiver modules.
The objective is to observe how the latency time improves as
this number grows. In the initialization phase, 100 senders
are deployed with one receiver, which is deployed on the
nodewith the highest betweenness centrality. From time point
3000 of the simulation time, a new receiver is added with
a period of 300 units. This process is repeated 19 times
(a total number of 20 receivers are deployed). With this
experimentation configuration, we observe that with 20 fog
nodes, the response time tends to be stable.

Figure 8a represents the network, where green nodes
contain the senders and the size of the nodes represents
the betweenness centrality. The results of the execution are
shown in Fig. 8b. The blue line is the evaluation of latency
time, and the green dotted line is the number of receivers
deployed.

We can observe that the network is saturated with only
one receiver (from 0 to 3000 in simulation time) because the
latency is continuously increased. From the first deployment
(time point 3300), the latency is reduced due to a higher
number of available receivers, and the messages are more
evenly distributed across the network. From the fifth module,
however, the inclusion of new receivers along the network
does not introduce any improvement since previous receivers
still receive the workload. Note that the selection process of
receivers is based on the minimum path between a source and
a destination node. Starting at the eleventhmodule, the alloca-
tions have an impact in the selection strategy, and the latency
is again stabilized.

B. DYNAMIC FAILURES ON NETWORK DEVICES
In the second scenario, we implement a dynamic fail-
ure of nodes where the failure rate is based on an

exponential distribution. The objective is to observe how
the latency time worsens as this number of failures grows
and consequently to show how the simulator can implement
dynamic scenarios. In this experiment, we remove only the
fog nodes and other network entities. Sender modules are not
removed to ensure that the workload is the same throughout
the simulation.

When a node fails, the node and its links are removed from
the topology, which can affect the internal processes that the
simulator handles. Thus, a new routing is computed for the
messages that had a path through the failed node. If there is
no other possible path, the simulator catches and records this
outcome in a log.When a removed node haswaitingmessages
to be served, the messages are discarded, and the simulator
records this case.

In the initialization of this experiment, there are 100
senders and 20 actuators deployed. All of them are allo-
cated in the same nodes as in the previous experiment.
The failures are generated from 500 time units and beyond
with a mean of 100 time units. At the end of the experi-
ment, the number of nodes available is 314, and the num-
ber of links is 1359, i.e., 86 nodes and 883 links are
removed.

We represent the topology in Fig. 9a, where red colored
nodes are randomly chosen to be removed during the sim-
ulation. There are five red colored nodes (fog nodes with
allocated actuators), which will be removed.
In Fig. 9b, we represent the evolution of aggregate latency

times (samples are aggregated each 100 time units), and the
failures are represented with black lines or green arrows in
the upper part of the graph. A black line marks the failure of
a network device, and a green arrow represents the failure of a
fog device. As we can observe, the latency worsens as failures
occur.

VOLUME 7, 2019 91755



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

FIGURE 9. Second scenario: Dynamic failures on network devices.

C. DYNAMIC MOVEMENT OF MESSAGE SENDERS
Our objective with the third scenario is showing how the
simulator can be used to model dynamical environments in
which users or services change the location along the simula-
tion. We model the localization of both of them (senders and
receivers) according to the nodes where they are connected.
In periodic steps, we approximate the senders by allocating
them in one closer node to the receivers, which are statically
allocated in specific nodes. The allocation is based on the
shortest path between the sender and receiver nodes. Thus,
in each step, all senders are allocated in the next node of this
path, reducing, by this, the hop count (or the shortest path
length). The objective is to observe how the latency time is
reduced since, in each step, receivers and senders are closer
and, also, to show how the simulator allows the modeling of
scenarios with dynamic workloads.

In the initialization phase, there are 100 senders randomly
allocated and 20 receivers. All the receivers are allocated
in the node with the highest betweenness centrality. Every
400 time units, all the senders are moved to the next nearest
node with regard to the receiver nodes. We use the shortest
path function to compute the next node. As the links around
the receiver nodes receive many requests, we reduce the
generation rate of the requests (100 time units). In addition,

FIGURE 10. Third scenario: Dynamic movement of workload sources.

the selection policy of this experiment includes a round robin
scheduler to select different receivers.
Figure 10a and Fig. 10b represent the topology (same

layout configuration than previous experiments). The green
colored nodes represent the initial location of the senders
(Fig. 10a), and at the end of the simulation (Fig. 10b). The
pink colored node contains the actuators.

The latency decreases at each step and ultimately con-
verges at approximately 4.5 time units (Fig. 10c). The latency
is obtained from the aggregation of the time series of events
every 100 time units. Most of the senders pass from the

91756 VOLUME 7, 2019



I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

node with most closeness to the actuators node in an aver-
age of 5 steps. We include in supplementary material a
MPG4 format movie clip where we represent the move-
ment of the senders at each step. This will be available at
http://ieeexplore.ieee.org.

In summary, the customization of temporal distributions
and the structure of the YAFS engine enable a direct and
flexible control of any type of event inside of the DES engine.
Another notable aspect of the YAFS design is that it is based
on a style of open programming, maximizing the use of
third-party libraries for delegating internal tasks such as the
generation of topologies, visualization, or data analysis. For
instance, aswe show in experiments, we use complex network
theory to perform several studies, and we export the topology
to other graph formats for debugging and visualization.

VI. CONCLUSION AND FUTURE WORK
We present a fog computing simulator for modeling complex
IoT domains. Our simulator, called YAFS, meets several
design objectives: a user customized configuration of fog
attributes, policies and a dynamic invocation of policies dur-
ing the simulation, a definition of network topologies based
on complex network theory, and the capacity to record com-
putational and transmissions results in a CSV format. This
last point makes the simulator ideal for enhancing interoper-
ability with third-party libraries, such as Grafana, for the cre-
ation of control panels to simulate monitoring infrastructures,
or Panda or R for data analysis. In addition, the infrastructure
and policies definitions can be done following a predefined
JSON-based format, which simplifies the use of the simulator
by non-expert programmers and facilitates the integration of
results of optimization algorithms for the evaluation of fog
placement proposals.

Regarding the evaluation, we compare two policies (cloud
and edge allocations) with iFogSim simulator. In both poli-
cies, the convergence of the results is similar. However,
the YAFS runtime is slightly better than that of iFogSim. We
highlight someYAFS characteristics designing three complex
experiments that are not compared with iFogSim since they
cannot be implemented under its API: in the first experiment,
we create new fog nodes along the simulation; in the second
one, we dynamically simulate failures of devices; and in the
third experiment, we represent the movement of workloads in
the infrastructure. The results are consistent with the expected
values in each experiment.

Future work will mainly cover the development of power-
aware management policies, functions for controlling the
computational capacity of the resources and improvements
in the nomenclature.

REFERENCES
[1] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,

‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[2] F. Bonomi, R.Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its role
in the Internet of Things,’’ in Proc. 1st Ed. MCC Workshop Mobile Cloud
Comput. (MCC). New York, NY, USA: ACM, 2012, pp. 13–16. doi: 10.
1145/2342509.2342513.

[3] O. Consortium. (2017). Openfog Reference Architecture for fog
Computing. Accessed: Dec. 18, 2018]. [Online]. Available: https://www.
openfogconsortium.org/wp-content/uploads/OpenFog_Reference_
Architecture_2_09_17-FINAL-1.pdf

[4] P. M. Mell and T. Grance, ‘‘SP 800-145. The NIST definition of cloud
computing,’’ Gaithersburg, MD, USA, Tech. Rep., 2011.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[6] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[7] T. V. Do, N. H. Do, H. T. Nguyen, C. Rotter, A. Hegyi, and P. Hegyi, ‘‘Com-
parison of scheduling algorithms for multiple mobile computing edge
clouds,’’ Simul. Model. Pract. Theory, vol. 93, pp. 104–118, May 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1569190X18301527

[8] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and
J. H. Abawajy, ‘‘Fog of everything: Energy-efficient networked computing
architectures, research challenges, and a case study,’’ IEEE Access, vol. 5,
pp. 9882–9910, 2017.

[9] A. V. Dastjerdi and R. Buyya, ‘‘Fog computing: Helping the Internet
of Things realize its potential,’’ Computer, vol. 49, no. 8, pp. 112–116,
Aug. 2016.

[10] R. Buyya and A. V. Dastjerdi, Internet of Things: Principles and
Paradigms, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers, 2016.

[11] R. K.Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y.Xiang,
and R. Ranjan, ‘‘Fog computing: Survey of trends, architectures, require-
ments, and research directions,’’ IEEE Access, vol. 6, pp. 47980–48009,
2018.

[12] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘iFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, edge and fog computing environments,’’ Softw., Pract.
Exper., vol. 47, no. 9, pp. 1275–1296, 2017. doi: 10.1002/spe.2509.

[13] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011. doi: 10.1002/spe.995.

[14] S. H. Strogatz, ‘‘Exploring complex networks,’’ Nature, vol. 410,
pp. 268–276, Mar. 2001. doi: 10.1038/35065725.

[15] M. E. J. Newman, ‘‘The structure and function of complex net-
works,’’ SIAM Rev., vol. 45, no. 2, pp. 167–256, 2003. doi: 10.1137/
S003614450342480.

[16] B. Saha, A. Mandal, S. B. Tripathy, and D. Mukherjee, ‘‘Complex
networks, communities and clustering: A survey,’’ CoRR,
vol. abs/1503.06277, pp. 1–15,Mar. 2015. [Online]. Available: http://arxiv.
org/abs/1503.06277

[17] S. Filiposka and C. Juiz, ‘‘Complex cloud datacenters,’’ IERI
Procedia, vol. 7, pp. 8–14, 2014. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S2212667814000227

[18] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, ‘‘A stable network-aware vm placement for cloud systems,’’ in
Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID),
May 2012, vol. 1, no. 1, pp. 498–506.

[19] I. Lera, C. Guerrero, and C. Juiz, ‘‘Availability-aware service place-
ment policy in fog computing based on graph partitions,’’ IEEE Internet
Things J., vol. 6, no. 2, pp. 3641–3651, Apr. 2019.

[20] Z. Zhang and X. Zhang, ‘‘A load balancing mechanism based on ant colony
and complex network theory in open cloud computing federation,’’ in
Proc. 2nd Int. Conf. Ind. Mechatron. Automat., May 2010, vol. 2, no. 1,
pp. 240–243.

[21] (2018). Center for Applied Internet Data Analysis. Macroscopic Internet-
topology Data Kit (ITDK). Accessed: Dec. 18, 2018. [Online]. Available:
https://www.caida.org/data/internet-topologydata-kit

[22] A. Medina, A. Lakhina, I. Matta, and J. Byers, ‘‘BRITE: An approach
to universal topology generation,’’ in Proc. MASCOTS, Aug. 2001,
pp. 346–353.

[23] I. Nurgaliev, E. Karavakis, and A. Aimar, ‘‘Kibana, Grafana and zeppelin
on monitoring data,’’ Tech. Rep., Aug. 2016. doi: 10.5281/zenodo.61079.

[24] D. Goodger and B. Warsaw. (2000). Index of Python Enhancement
Proposals. Accessed: Dec. 18, 2018. [Online]. Available: https://www.
python.org/dev/peps/

[25] A. Brogi and S. Forti, ‘‘QoS-aware deployment of IoT applications through
the fog,’’ IEEE Internet Things J., vol. 4, no. 5, pp. 1185–1192, Oct. 2017.

VOLUME 7, 2019 91757

http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.5281/zenodo.61079


I. Lera et al.: YAFS: A Simulator for IoT Scenarios in fog Computing

[26] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, ‘‘Emu-
Fog: Extensible and scalable emulation of large-scale fog computing
infrastructures,’’ in Proc. IEEE Fog World Congr. (FWC), Oct./Nov. 2017,
vol. 1, no. 1, pp. 1–6.

[27] C. Sonmez, A. Ozgovde, and C. Ersoy, ‘‘Edgecloudsim: An environment
for performance evaluation of edge computing systems,’’ in Proc. 2nd
Int. Conf. Fog Mobile Edge Comput. (FMEC), May 2017, vol. 1, no. 1,
pp. 39–44.

[28] T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, and S. U. Khan,
‘‘FogNetSim++: A toolkit for modeling and simulation of distributed fog
environment,’’ IEEE Access, vol. 6, pp. 63570–63583, 2018.

[29] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. Zahraee, and H. Karl,
‘‘Maxinet: Distributed emulation of software-defined networks,’’ in Proc.
Netw. Conf. (IFIP), Jun. 2014, pp. 1–9.

[30] A.-L. Barabási and M. Pósfai, Network Science. Cambridge, U.K.:
Cambridge Univ. Press, 2016. [Online]. Available: http://barabasi.com/
networksciencebook/

[31] A. Hagberg, P. Swart, and D. S. Chult, ‘‘Exploring network structure,
dynamics, and function using NetworkX,’’ in Proc. 7th Python Sci. Conf.,
Jan. 2008, pp. 11–15.

[32] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung, ‘‘Developing iot
applications in the fog: A distributed dataflow approach,’’ in Proc. 5th Int.
Conf. Internet Things (IOT), Oct. 2015, vol. 1, no. 1, pp. 155–162.

[33] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and Tomor-
row. Cham, Switzerland: Springer, 2017, pp. 195–216. doi: 10.1007/978-
3-319-67425-4_12.

[34] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,
V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter, Serverless Com-
puting: Current Trends and Open Problems. Singapore: Springer, 2017,
pp. 1–20, doi: 10.1007/978-981-10-5026-8_1.

[35] W. McKinney, ‘‘Data structures for statistical computing in python,’’ in
Proc. 9th Python Sci. Conf., S. van der Walt and J. Millman, Eds., 2010,
pp. 51–56.

[36] Y. Pigné, A. Dutot, F. Guinand, and D. Olivier, ‘‘GraphStream: A tool
for bridging the gap between complex systems and dynamic graphs,’’
CoRR, vol. abs/0803.2093, pp. 1–10, Mar. 2008. [Online]. Available:
http://dblp.uni-trier.de/db/journals/corr/corr0803.html#abs-0803-2093

[37] P. Erdõs and A. Rényi, ‘‘On the evolution of random graphs,’’ in Publica-
tions of the Mathematical Institute of the Hungarian Academy of Sciences,
1960, pp. 17–61.

[38] L. C. Freeman, ‘‘Centrality in social networks: Conceptual clarifica-
tion,’’ Social Netw., vol. 1, no. 3, pp. 215–239, 1978. doi: 10.1016/0378-
8733(78)90021-7.

[39] I. Lera, C. Guerrero, and C. Juiz, ‘‘Comparing centrality indices for net-
work usage optimization of data placement policies in fog devices,’’ in
Proc. 3rd Int. Conf. Fog Mobile Edge Comput. (FMEC), Apr. 2018, vol. 1,
no. 1, pp. 115–122.

ISAAC LERA received the Ph.D. degree in com-
puter engineering from Balearic Islands Univer-
sity, in 2012. He is currently an Assistant Professor
of computer architecture and technology with the
Computer Science Department, University of the
Balearic Islands. He has authored several jour-
nals and international conferences. His research
interests include semantic web, open data, system
performance, educational innovation, and human
mobility.

CARLOS GUERRERO received the Ph.D. degree
in computer engineering from Balearic Islands
University, in 2012. He is currently an Assistant
Professor of computer architecture and technol-
ogy with the Computer Science Department, Uni-
versity of the Balearic Islands. He has authored
around 40 papers in different international con-
ferences and journals. His research interests
include web performance, performance optimiza-
tion, resource management, web engineering, and
cloud computing.

CARLOS JUIZ (M’02–SM’12) received the Ph.D.
degree in computer engineering from Balearic
Islands University, in 2001. He is currently
a Full Professor of computer architecture and
technology with the Computer Science Depart-
ment, University of the Balearic Islands. He has
authored around 150 papers in different interna-
tional conferences and journals. His research inter-
ests include performance engineering, green IT,
and IT governance.

91758 VOLUME 7, 2019

http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-981-10-5026-8_1
http://dx.doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.1016/0378-8733(78)90021-7

	INTRODUCTION
	RELATED WORK
	YAFS ARCHITECTURE
	TOPOLOGY AND ENTITY MODELLING
	APPLICATION MODEL
	DYNAMIC POLICIES
	RESULTS

	EVALUATION
	COMPARISON WITH IFOGSIM
	CONVERGENCE

	THREE COMPLEX SCENARIOS
	DYNAMIC ALLOCATION OF MODULES
	DYNAMIC FAILURES ON NETWORK DEVICES
	DYNAMIC MOVEMENT OF MESSAGE SENDERS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ISAAC LERA
	CARLOS GUERRERO
	CARLOS JUIZ


