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Abstract—Minimal hardware implementations of machine-
learning techniques have been attracting increasing interest over
the last decades. In particular, field-programmable gate array
(FPGA) implementations of neural networks (NNs) are among the
most appealing ones, given the match between system require-
ments and FPGA properties, namely, parallelism and adaptation.
Here, we present an FPGA implementation of a conceptually
simplified version of a recurrent NN based on a single dynamical
node subject to delayed feedback. We show that this configuration
is capable of successfully performing simple real-time temporal
pattern classification and chaotic time-series prediction.

Index Terms—Artificial neural networks (ANNs), field-
programmable gate arrays (FPGAs), hardware (HW), multiple
signal classification, neural network (NN), pattern recognition,
recurrent neural networks (RNN), time-series prediction.

I. INTRODUCTION

OUR modern society is generating increasingly large
amounts of information, often even referred to as the age

of big data. Machine learning, particularly recurrent neural net-
work (RNN) approaches, represents one of the most successful
attempts to process large amounts of sequential information in
a meaningful manner.

Reservoir computing (RC) stands out as a relatively simple
technique to implement RNNs [1]–[3]. Unlike Hopfield net-
works where the connection weights between network nodes
have to be trained for specific tasks, in RC, weights are
randomly initialized and left fixed. The training procedure is
only applied to the connection weights between the recurrent
network and its output layer that is used for, for example, clas-
sification or other applications. This training procedure enor-
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mously simplifies the implementation and can be performed, in
practice, via a simple linear regression.

While RC is usually realized in software, this concept is
particularly appealing for hardware implementations since the
connections in the recurrent network do not need to be changed
in time. For increasing convenience of hardware implementa-
tions, it has been recently shown that a single nonlinear node
with self-feedback can replace the recurrent network on the
reservoir [4]. The main advantages of delay-based systems are
their conceptual simplicity and potentially low hardware re-
quirements [5]–[8] resulting from the possible implementation
within a RAM memory. The high regularity and area efficiency
of these memories facilitate to compact the complex reservoir
networks.

Here, we present a self-contained digital implementation
of the single-node reservoir computer with delayed feedback.
The final solution is hosted within a field-programmable gate
array (FPGA), with the delay line being implemented using a
RAM memory. The main advantage of using an FPGA solution
with respect to the standard microprocessor-based alternative
is the possibility of implementing both, the arithmetic units
and the reservoir, within the same chip. The utilization of an
on-chip memory to implement the reservoir network enables
a higher throughput and implies lower power consumption
than using onboard memories (the memory access speed of
an onboard memory is on the order of gigabytes per second,
whereas that of an on-chip one is on the order of terabytes per
second). Therefore, the use of a compact implementation for
the whole system in a single integrated circuit is interesting
from the energy efficiency point of view. It can be a solution
for those electronic systems implementing computational intel-
ligence techniques and requiring low power dissipation (such as
wireless sensor networks [9]). Importantly, the replacement of
the recurrent network, with a large number of nodes, by a single
network node subject to delayed feedback relaxes the hardware
requirements for the FPGA. To demonstrate the capabilities of
such a device, we evaluate its performance in a simple pattern
recognition task and a benchmark time-series prediction task.

FPGA-based realizations of artificial NN (ANN) models
are numerous [10]. Nonetheless, chip implementations of the
RC concept are scarce [11], [12]. The present work is the
first digital implementation of the RC approach using a single
nonlinear oscillator with delayed feedback as dynamical node.

II. METHODS

In traditional RC, an input signal is injected from the
input layer to the reservoir via random connections. The large
number of nodes in the reservoir creates a high-dimensional
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Fig. 1. Schematic view of a reservoir computer based on a single nonlinear
node (NL) with delay (τ). Virtual nodes are defined as temporal positions in
the delay line.

space (much higher than the dimension of the input signal) [3].
The effect of the input signals onto the nodes in the recurrent
network is to generate transient dynamical states that are later
read out and classified in the output layer. For the training of
the classifiers, each input is assigned a corresponding target
value. Our reservoir computer is based on the emulation of a
recurrent network via a single nonlinear dynamical node subject
to delayed feedback [4]. Fig. 1 depicts the general concept of
this approach, including the three layers required for RC: the
input layer, the delay-based reservoir, and the output layer. In
the reservoir, we define N equidistant points separated in time
by θ = τ/N within one delay interval of length τ . We denote
these N equidistant points as virtual nodes,” as they play a role
analogous to the nodes in a traditional reservoir. The values of
the delayed variable at each of the N points define the states
of the virtual nodes. These states characterize the transient
response of the nonlinear node (NL) to a certain input at a given
time. The separation time θ among virtual nodes is chosen to
optimize the reservoir performance. We choose θ < T , with T
being the characteristic time scale of the nonlinear node. Via
this choice, the states of the virtual nodes become dependent on
the states of the neighboring nodes. Interconnected in this way,
the virtual nodes emulate a network serving as reservoir.

The virtual nodes are subjected to the time-continuous or
discrete input stream which can be a time-varying scalar vari-
able or vector of any dimension. The feeding to the individual
virtual nodes is achieved by time multiplexing the input signal.
Fig. 1 illustrates the input layer preprocessing for a scalar
input. For this, the input stream undergoes a sample and hold
operation to define a stream that is constant during one delay
interval τ , before it is updated with the next sample in the
input signal. To emulate the random weights from the input
layer to the reservoir in traditional RC, we introduce a random
matrix mask. Upon carrying out the multiplication of the mask
with the sample at a certain time t0 of the input signal, we
obtain an N -dimensional vector which represents the temporal
input sequence within the interval [t0, t0 + τ) [4]. Each virtual
node is updated every time τ . After processing the input signal,
a training algorithm assigns an output weight to each virtual
node, such that the weighted sum of the states approximates the
desired target value as closely as possible. The training follows
the standard procedure for RC [13], [14]. The testing is then
performed using previously unseen input data of the same kind
of those used for training.

Fig. 2 schematically shows the digital implementation of
the proposed reservoir computer. The core of the digital im-
plementation is a differential equation solver that emulates

the Mackey–Glass oscillator [15] as the nonlinear node. This
oscillator together with the RAM block represents the delay-
based reservoir depicted in Fig. 1. The Mackey–Glass node
receives the external input, after masking the signal in the input
layer [4], in our case with 8-bit resolution. The precision of
the digital representation of the input and output signals has a
major impact on the ultimate performance of the system [8].
In the global implementation, a control block configures both
the dynamical system with the desired parameters as well as
the external memory with the mask and weight values for each
node and output class. In addition, it states which memory
value should be provided at each time step. An external C++
program specifies to the control block whether the system must
enter into a configuration mode (in which it is arranged with the
proper parameters and memory values) or into the operation
mode in order to process the input signals. The configuration
parameters, mask, weights, and input values are all stored in
external data files. The orders to choose the system’s mode and
all of the data are sent to the system by the C++ program via
the serial port.

Once the system has been configured, it is provided with an
input value every delay interval τ , as explained before. The
input signal is time multiplexed within each τ by multiplying
each mask value in time steps θ = τ/N before feeding the
dynamical system. The values of the delayed variable x at each
time jθ (individual virtual nodes’ outputs with j = 1, . . . , N )
are stored in the internal memory of the FPGA and supplied to
the classification block. Finally, the output layer performs every
time θ a multiplication of the state xj by the corresponding
weight ωjl for each one of the c output classes (l = 1, . . . , c).
Only one class needs to be considered (c = 1) when the system
performs a prediction task.

To perform temporal classification, the result of this product
is sequentially added for a given number (α) of intervals τ

yl =

α·N∑

j=1

ωjl · xj . (1)

The greatest value of the weighted sum of the states yk
determines the output category that matches the input signal,
i.e., our system follows a winner-take-all strategy. In the case of
time-series prediction, the weighted sum (1) is computed with
α = 1, providing a predicted value at each interval τ .

The numerical quantities are represented in a digital format
adopting the fixed-point notation. In particular, unsigned nota-
tion is used to represent all variables except the output weights,
which require an additional sign bit. A number of 8 fractional
bits and no integer bits are used for the input signal as well as
for the mask values and the delayed variable x. Consequently,
their working range is limited to the [0, 1) interval. Intermediate
variables are given a greater resolution when necessary. The
output weights ωjl and the final classification outputs yl are
provided with a 16-bit resolution.

The differential equation solver shown in Fig. 2 is imple-
mented using digital logic. The digital solver reproduces the
differential equation

ẋ = (k − x)
1

T
(2)
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Fig. 2. Diagram of the reservoir computer implemented in the FPGA.

Fig. 3. Schematic of the differential equation solver. First-order Euler method
is implemented by means of an adder, a multiplier, and a register. 16 bits (n =
16) are used within the solver.

where T is the characteristic time of the system. Expression
(2) is reduced to the Mackey–Glass oscillator when k takes
the form

k =
η(xτ + γJ)

1 + (xτ + γJ)p
(3)

where the variable k is implemented by an appropriate digital
arithmetic block and xτ is the delayed version of x provided by
the RAM memory. Using a time step fixed to Δt = T/255 and
assuming that ẋ � (xi+1 − xi)/Δt (first-order Euler method),
the differential equation (2) can be replaced by the next recur-
rent expression

xi+1 = xi +
k − xi

255
. (4)

Expression (4) is implemented digitally by using only an
adder, a multiplier, and D flip-flops as it is shown in Fig. 3.
Even though an amount of 16 bits (n = 16) is used to codify
the variable x within the differential equation solver, the output
(xi+1) is provided to the RAM memory with 11-bit resolution
and to the classification block with 8-bit resolution. The mul-
tiplication of the current state value xi by 255 is performed
in order to obtain the value of s defined as s = 256 xi − xi.
Division by 256 is performed by shifting the binary numbers
eight positions to the right. The addition of k and s after being
shifted results in a good approximation to expression (4) is

xi+1 = xi +
k − xi

256
. (5)

Fig. 4. Sawtooth input signal and its corresponding states x(t) for the case in
which p = 7, γ = η = 0.9, τ = 10 T, N = 50, θ = 0.2 T, and T = 86.7 μs.
The dynamical system nonlinearly maps each value of the sampled input into
an N -dimensional state that facilitates classification. The bottom panel is an
enlargement of x(t), as indicated by the closed black box above, and the input
expanded over a τ interval.

As an example of the implementation, we show in Fig. 4 a
time trace of x(t) when the input signal to the system I(t) is
a sawtooth wave. The bottom panel of Fig. 4 illustrates how
each sample of the input signal is expanded over the N virtual
nodes, multiplied by a random mask, and transformed by the
Mackey–Glass nonlinearity.

III. RESULTS

We synthesized the proposed digital circuitry on a Cyclone
III low-cost FPGA. As shown in Table I, the implementation
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TABLE I
HARDWARE RESOURCES (CYCLONE III EP3C16F484C6N)

Fig. 5. Simulation results for the (a) error rate and (b) margin in the signal
classification task. The two scanned parameters are γ and η . The fixed
parameters are p = 7, τ = 10 T, N = 50, and c = 3. The obtained error rate
and margin are encoded in color.

needs limited hardware resources. The number of logic ele-
ments needed for the implementation represents 10% of the
total number of logic elements in the FPGA, and only suffi-
cient memory is needed to allocate the delayed signals. The
implementation was designed to use delay values up to τ =
128T and a number of categories up to c = 255 using 71%
of the RAM capacity. This limited use of resources highlights
the advantages, from the hardware implementation point of
view, of using a single nonlinear node with delay and time
multiplexing. The measured power consumption of the whole
FPGA development board (including peripherals) is 1.2 W, of
which 83 mW is estimated to be due to the configured circuit.

As a proof-of-concept and to illustrate its real-time classifi-
cation capabilities, we devised a simple benchmark task. We
trained the reservoir to differentiate between three different
noisy input signals, namely, sawtooth, sine, and square input
waveforms.

In order to select the optimum configuration parameters,
which would yield a good experimental classification perfor-
mance, we carried out numerical simulations first. The perfor-
mance of the system was evaluated in terms of the average
error rate in the classification of the three input waveforms
and the confidence margin, defined as the distance between the
reservoir’s best guess of the target and the closest competitor.
In the Mackey–Glass nonlinearity, the parameters γ and η were
varied, while the delay τ = 10 T (N = 50) and p = 7 were
kept fixed. The robustness in the classification was tested by
adding noise, with 2% relative amplitude, to the input signals
and restricting the input (and output) values to a resolution
of 8 bits.

Fig. 5 depicts the numerical results in the η–γ plane. It can
be observed that large values of γ and η yield low error rates

TABLE II
PARAMETER VALUES USED IN THE EXAMPLE APPLICATION AND THEIR

POSSIBLE RANGES FOR THE CURRENT FPGA IMPLEMENTATION

Fig. 6. Pattern recognition system behavior when the input is a sinusoidal
signal. We show the input signal (right y-axis) along with the output classifiers
(left y-axis) for the three possible patterns to be recognized. We obtain a clear
recognition of the input type.

and a high separation between the three classes, allowing for
good classification results since these conditions are the most
robust to fluctuations. The optimum values for the configuration
parameters compatible with our digital realization are shown
in Table II. The parameters must be in the allowed ranges and
ensure that the state x is kept within the limits given by the 8-bit
resolution [0, 1).

The experimental realization yields the results depicted in
Fig. 6. The output classifiers yk, which are computed for
each input step and updated at the end of each cycle (after
20 intervals τ ), are plotted for the sinusoidal input case illustrat-
ing that the input signal can be clearly differentiated. Similar
results are found for the sawtooth and rectangular patterns.
Moreover, it is worth highlighting that this signal discrimination
task is successfully performed in real time.

The system is trained such that the weighted sum of the states
approximates the desired target value as closely as possible,
following the standard procedure for RC [13], [14]. As for the
numerical simulations, the input signal contained 2% random
variations during the training process. The testing was carried
out using previously unseen input data of the same kind and
with the same noise level as those used in the training process.
An error-free classification was found for a test set containing
1000 cycles of each type of the input signals.

The second task that we evaluated is a standard time-series
prediction task. It consists in the one-step ahead prediction
of the Santa Fe data set [16], an experimental recording of
the output power of a far-infrared laser when operating in a
chaotic regime. The data set contains 10 000 samples, where
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Fig. 7. Segment of the laser time series (predicted and targeted values).

the first 9000 were used for training and the remaining 1000
were used for testing. Fig. 7 shows a fragment of the predicted
and targeted laser intensity values.

Similar simulations to the ones performed for the classi-
fication task were carried out to determine the configuration
that gives the best performance. An optimum normalized mean
square error of the prediction NMSE = 0.051 was obtained for
γ = 0.75 and η = 0.86 (keeping the values of Table II for the
rest of the parameters). This value increased to NMSE = 0.107
when the resolution of the state x values was limited to 8 bit. A
comparable prediction error NMSE = 0.131 was obtained with
our FPGA implementation.

Concerning the processing speed of the system, the charac-
teristic time T is presented in Table II assuming a fixed inte-
gration step Δt = T/255 and a clock period TCLK = 0.02 μs.
An additional T0 factor was introduced in the system to ensure
that the external memory had enough time to provide the mask
values to the input layer block within one time step. This
factor was also used to match the system’s delay interval τ
with the rate at which the input values were received via the
serial port.

IV. CONCLUSION

The digital implementation of a single-node reservoir com-
puter described here represents a novel platform to perform
real-time pattern classification. As a result of using delay
embedding and time multiplexing, the final solution can be
developed within a simple low-cost FPGA. After optimizing the
resources of the FPGA, the number of required logic elements
is minimal. Therefore, this contribution extends the range of
efficient implementations of ANNs in hardware [10], [17].

As an example, we have shown that this computationally
low-cost method is capable of classifying different patterns,
highlighting the capabilities of our simple approach. Impor-
tantly, this delay-based approach can be easily extended to
differentiate a larger number of input classes. The properties
of the system presented in this brief are particularly suited
to process temporal information in, for example, distributed

sensory networks, predictive controllers, and medical moni-
toring applications. In the latter case, a delay-based software
implementation of RC was found to achieve state-of-the-art per-
formance in the classification of electrocardiographic signals of
cardiac arrhythmia with an average specificity of 97.75% and
an average accuracy of 98.43% [18]. Since this medical applica-
tion requires a sampling time of about 1 ms, ECG classification
is fully compatible with our FPGA-based implementation of
RC in real time.
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