
FO
R A

PPROVAL

Cognitive Computation
https://doi.org/10.1007/s12559-020-09798-2

Hardware-Optimized Reservoir Computing System for Edge
Intelligence Applications

Alejandro Morán1 · Vincent Canals1,2 · Fabio Galan-Prado1 · Christian F. Frasser1 · Dhinakar Radhakrishnan3 ·
Saeid Safavi3 · Josep L. Rosselló1,2

Received: 7 March 2020 / Accepted: 30 November 2020
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Edge artificial intelligence or edge intelligence is an ever-growing research area due to the current popularization of the
Internet of Things. Unfortunately, incorporation of artificial intelligence (AI) in smart devices operating at the edge is a
challenging task due to the power-hungry characteristics of deep learning implementations, such as convolutional neural
networks (CNNs). As a feasible alternative, reservoir computing (RC) has attracted a lot of attention in the field of machine
learning due to its promising performance in a wide range of applications. In this work, we propose a simple hardware-
optimized circuit design of RC systems presenting high energy-efficiency capacities that fulfill the low power requirements
of edge intelligence applications. As a proof of concept, we used the proposed design for the implementation of a low-
power audio event detection (AED) application in FPGA. The measurements and simulation results obtained show that the
proposed approach may provide significant accuracy with the advantage of presenting ultra-low-power characteristics (the
energy efficiency estimated is below the microjoule per inference). These results make the proposed system optimal for edge
intelligence applications in which energy efficiency and accuracy are the key issues.

Keywords Artificial intelligence · Artificial neural networks · Neuromorphic circuits · Recurrent neural networks

Introduction

Development of efficient Internet of Things (IoT) systems
[1] requires implementation of low-power machine learning
(ML) methodologies in a single chip platform. ML applica-
tions often need to process large data sizes in a short time
which demands significant parallelism and large chip areas
(devices that are not yet available on edge devices) A sate of
the art solution is to send the captured data to cloud servers,
and wait for the server processed response [2]. This solution

This article belongs to the Topical Collection: Trends in Reservoir
Computing
Guest Editors: Claudio Gallicchio, Alessio Micheli, Simone
Scardapane, Miguel C. Soriano

� Josep L. Rosselló
j.rossello@uib.es

1 Universitat de les Illes Balears, Palma de Mallorca,
07122, Spain

2 Balearic Islands Health Research Institute, Palma de Mallorca,
07010, Spain

3 Endura Technologies, Greater San Diego Area, CA, USA

implies a lot of data transmission, which in turn results in
network congestion in addition to server dependence; there-
fore, there is a growing demand for optimization of edge
processing particularly in smart devices and IoT applica-
tions. However, research on edge intelligence (EI) is still not
mature due to the area and power restrictions of edge nodes

that hinder the implementation of traditional deep learning
techniques, which consequently implies high computational
power. Therefore, there is huge interest in the microelec-
tronic industry to be able to efficiently implement accurate
and energy-efficient EI chips.

Artificial neural networks (ANNs) arise as one of the
main ML methodologies used to develop AI systems due
to their capability of solving typical real-life problems such
as image or sound recognition. The most popular ANN
is the convolutional neural network (CNN) that consists
in the use of a feed-forward neural network composed of
different sequentially connected convolution and informa-
tion reduction layers (as max-pooling or average-pooling).
CNNs present state of the art performance when applied
to image or sound recognition problems, at the price of
the need to implement a large amount of multiply-and-
accumulate (MAC) operations. This can result in severe

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-020-09798-2&domain=pdf
http://orcid.org/0000-0001-5390-2276
mailto: j.rossello@uib.es


FO
R A

PPROVAL

Cogn Comput

drawbacks in terms of latency, power, and energy consump-
tion when considering CNNs as a feasible methodology for
low-power EI applications. In this context, there are recent
advances in low-power voice activity detection and keyword
spotting implementations using relatively small CNNs [3–
5], which incorporate spectrogram-based feature extraction
methods similar to the one considered in this work.

Reservoir computing (RC) [6–13] is an attractive ANN
training framework with relative computational simplicity
due to its simple learning process and the use of fixed
weights inside the ANN structure independent of the
training process. RC systems are usually composed of a
random recurrent neural network (RNN), which is referred
to as the reservoir, and a set of inputs that are randomly
connected to it. All internal and input connections to
the reservoir are kept fixed, while the training process is
normally carried out using ordinary least squares (OLS)
over the states of the reservoir.

RC systems can be optimized to be implemented in
hardware [14] by using a specific ring topology [15] so
that each neuron is characterized to have a low fan-in that
simplifies its hardware implementation. Along with this ring
topology, the reservoir connectivity may also be optimized
by selecting specific weights so that only simple shift-and-
add operations are performed at each neuron of the reservoir
instead of computationally expensive MAC operations at
each neural connection. In this context, there are previous
works regarding FPGA implementations focusing on the
so-called single-node reservoir based on only one physical
node [10] which can represent a ring topology by time
division multiplexing with an input mask [16, 17] and
specific nonlinearities with feasible electronic and optical
implementations. Moreover, hardware implementations of
RC have been previously applied to spoken digit recognition
[17, 18]. In this context, our work differs from previous
publications on FPGA implementations in two main
aspects: the training method and the digital implementation.
The first difference is that training is performed on a per-
frame basis using log-mel energies as the input features.
Also, the reservoir states are not stored in RAM since
the implementation is register-based and fully parallel with
a very simple nonlinearity at each node. This optimized
RC model has demonstrated to provide good accuracy
and energy efficiency characteristics when applied to time-
series forecasting or equalization problems [14, 19, 20].

In this work, a feasible methodology for ultra-low-
power AI applications is provided by using a hardware-
optimized reservoir computing system. The circuitry is
applied for an audio event detection problem, showing that
it is a feasible alternative that may fit with the low power
demands required for edge intelligence applications. Audio
tagging or classification is potentially useful for filtering
environmental data through multiple smart sensors. A clear

example could be detecting danger if the system detects gun
shots, people screaming, etc. For this reason, the system
is evaluated using first a 2-class classification to determine
whether there is a gun shot or not in a 4-s audio slice. Then
a more complex 10-class task containing background and
foreground audio is used to proof the proposed classifier:
the Urban Sound 8K dataset [21].

The Optimized Hardware Reservoir

Reservoir Computing Principles

A reservoir computing (RC) system maps input data to
a higher dimensional space, so that as the reservoir size
increases, it is more likely to discriminate the input data.
In RC systems, only the output layer, which is connected
to the reservoir, is trained using OLS or cross-entropy
loss minimization [22], while the rest of the reservoir
connectivity remains fixed (see Fig. 1). The internal
connectivity of the reservoir is normally sparse (typically
1% connectivity) [7], and nodes may be implemented using
traditional artificial neural Networks (echo state networks)
[23], spiking neurons (liquid state machines) [24–26], or
cellular automata (ReCA systems) [27].

The reservoir implemented in this work is created
using classical neurons, implementing a piece-wise linear
function to a basic linear operation to its inputs. The output
of each neuron at a given time is denoted as xi(t), where
i ∈ {1, . . . , N} is the neuron index and N is the total
number of neurons. External inputs are denoted as uj (t)

for j ∈ {1, . . . , M} where M is the total number of
instantaneous inputs. The connectivity matrix R is defined
with dimensions N × (M + N), where the first M columns
correspond to the external input weights, vij , whereas its
last N columns correspond to the internal weights, rij .

(1)

We define the vector z(t) as the combination of the
reservoir state vector x(t) and the external input vector
u(t). Vector x(t) is composed of the N outputs evaluated
at the discrete time step t at every neuron of the
reservoir. Thus, vector z(t) has M + N components. Its
first M rows correspond to those of vector u and the
remaining N rows to internal states x(t), so that z(t) =
(u1(t), u2(t), . . . , uM(t), x1(t), . . . , xN(t))T .

Reservoir dynamics is obtained by iterating the following
expression:

x(t + 1) = f (R · z(t)) (2)



FO
R A

PPROVAL

Cogn Comput

Fig. 1 Ring topology RC
applied to log-mel spectral
energies. The input audio is first
pre-processed to obtain the
log-mel features, so that linear
combinations of these features
are inputs to the reservoir, which
in turn computes a higher
dimensional nonlinear mapping
in the time domain. Finally, the
reservoir states are linearly
combined to obtain a meaningful
readout, which is post-processed
to improve performance

where f is a nonlinear activation function such as the
classical tanh(x) activation function or other forms of non-
linearity. For low-cost hardware implementation, one may
choose a piece-wise linear function activation, such as the
simplification described in (3).

f (x) = max(−1, min(x, 1)) (3)

The output of the RC system y(t) = (y1(t), . . . , yK(t))T

is obtained as follows:

y(t) = W · z(t) + b (4)

where the bias b is a K-dimensional column vector and W is
a K×(M+N)-dimensional weight matrix. In this work both
W and b are obtained using the OLS optimization method.

The Cyclic Reservoir

A ring topology or single cycle reservoir (SCR) [15]
has been selected for a multidimensional audio event
classification task. In particular, each audio signal is pre-
processed in hardware by a feature extraction digital block,
providing 64 (M = 64) 8-bit log-mel spectral features
per frame used as inputs to the reservoir. For a compact
hardware implementation, the chosen reservoir architecture
is cyclic (see Fig. 1), where each neuron has two inputs:
the external signal coming from one frequency channel and
the output signal from the previous neuron in the ring. The
connection weights of the neurons are fixed to either r for
the internal inputs and to either +v, −v, or 0 (not connected)
for the input-to-reservoir connections. To underline the
random nature of external weights (which can be either
positive, negative, or zero), the random parameters ξij are
introduced, which changes the sign of the external inputs.

These parameters take the values +1, −1, or 0 randomly.
The connectivity matrix is therefore given by:

(5)

where ξij ∈ {−1, 0, +1}, i = 1, 2, . . . , N , j =
1, 2, . . . ,M .

Training on a Per-Frame Basis

Since the readout layer of the reservoir provides a real-
time response, i.e., the output may change every time step,
the supervised training method includes real-time labeling.
Every single log-mel frame is therefore labeled with its
corresponding value as depicted in Fig. 2. The figure
illustrates the correspondence in time of a per-frame labeled
sound. Although the label refers to the actual sound, it is
assigned on every log-mel frame.

In order to assign a unique label to a given evaluation
time period Teval , a post-processing strategy is applied to
the per-frame prediction, as indicated in Fig. 1. Although the
OLS training method is performed on the per-frame labels,
the model is validated including the next post-processing
stage.

As is expressed in (4), the outputs y(t) are computed as a
linear combination of the state vector z(t) that includes both
inputs and neuron states. Each yj (t) time-varying output
is bounded in the interval [−1, +1] and is representing the
suitability of the j th category to be the correct one. For the
estimation of the most likely category, we consider a certain
time interval Teval . The highest category that is over a given



FO
R A

PPROVAL

Cogn Comput

Fig. 2 Audio, features, and
corresponding label assigned on
a per-frame basis

threshold value (yth) at each time step is added up to a
generic score for each category so that:

Sj =
Teval∑

ti=0

Yj (ti) (6)

where Boolean Yj (t) = 1 in case yj (ti) > yth and yj (ti) >

yk(ti), ∀ j �= k, otherwise Yj (ti) = 0. Finally, for the
estimation of the most likely category, a specific reduction
factor Dj is defined for each one, so that the predicted
label L is given by expression (7), where parameters Dj are
selected for the best fit of the training database.

L = arg max
j

{
Sj

Dj

}
(7)

The Optimized Reservoir Architecture

Each neuron in the reservoir is implemented using digital
blocks as shown in Fig. 3, where a non-linearity function
is implemented, representing the activation function of
expression (3). A linear transformation is performed to both
inputs uj and xi−1, avoiding the use of multipliers due to
the higher cost in terms of hardware resources with respect
other functions as the addition or max function (see Table 1).

For the estimation of network configuration parameters
(r and v), we adjust the best values to optimize both
hardware and accuracy. In particular, we set v = 1 and
r = 1 − 1

24 . Therefore, the r · xi−1 product is done using
simple shift-and-add operations, with a lower cost in terms

of logic gates (see Fig. 3). The post-processing (estimation
of Yj and Sj ) could be performed using additional digital
hardware or by a low-end (soft) microprocessor with a low
cost if the number of categories is low compared to the
reservoir size N . The main advantage of using a minimal
soft microprocessor (e.g., Nios II [28] or MicroBlaze [29])
is versatility when compared to custom design-specific
hardware, since it can be implemented in FPGA to control
other hardware resources or perform small computations at
the price of using additional resources and being less energy
efficient due to e.g. instruction fetch and decode. In the
case of a large reservoir, computationally intensive tasks
would be done by the reservoir hardware, so that the energy
and area devoted to the soft processor would be negligible.
However, in the current implementation, both preprocessing
and post-processing stages are performed offline. The
implemented subsystem is the Reservoir Computing Block
highlighted in Fig. 1. In addition, Table 2 reports the FPGA
resources utilized to implement the ring-topology reservoir,
which grow almost linearly with the number of nodes as
expected.

Audio Event Detection Database

Gun-Shot Detection Database

A database composed of ambient and gunshots has been
analyzed. Three different categories are defined (“silence”,



FO
R A

PPROVAL

Cogn Comput

Fig. 3 Digital node hardware
architecture for the ring
topology reservoir

Table 1 Number of 8-bit hardware lookup tables required to perform
an 8-bit and 16-bit binary operation

Adder Multiplier Maximum

8-bit 8 LUTs 91 LUTs 15 LUTs

16-bit 16 LUTs 171 LUTs 26 LUTs

Ratio 1 11 1.7

Data obtained from Quartus Prime software for a Cyclone V FPGA
device

Table 2 FPGA resource utilization for the 64-input reservoir subsystem

Nodes ALMs ALUTs Registers

64 757.7 1769 512

192 2393.9 5041 1536

768 9368.8 18,945 6147

2048 26,555.9 111,322 16,391

4096 51,566.9 162,072 32,783

8192 101,588.7 263,571 65,566

12,288 151,610.5 365,070 98,349

No on-chip DSP or memory blocks were implemented to compile
these designs. Data obtained from Quartus Prime software for a
Cyclone V FPGA device. Note that hardware resources are given in
both ALMs and their equivalent 4-bit ALUTs + Registers

Table 3 Gun-shot dataset, a total of 727 files are used combining both
“ambient” and “gun-shot” situations

Ambient Gun-shot

Train 400 111

Test 113 103

Total 513 214

“ambient”, and “gun-shot”). Both training and testing sets
are described in Table 3 with a total of 727 different files
between ambient and gunshots.

Multiclass Audio Database

The Urban Sound 8K database [21], containing ten different
audio categories of urban sounds (“air conditioner,” “car
horn,” “children playing,” “dog bark,” “drilling,” “engine
idling,” “gun shot,” “jackhammer,” “siren,” “street music”),
is analyzed. It contains 8732 labeled audio files with a duration
that is less than or equal to 4 s contaning both background
and foreground audio samples. These files are preprocessed
to obtain their corresponding log-mel spectrograms, which
are used for training and testing following the 10-fold cross-
validation experimental setup explained in [21]. Therefore,
the results presented in this section are averaged over the 10
possible train or test set combinations.

Statistical Performance Metrics

The statistical performance metrics used for the gun-shot
detection database are the next:

Overall Accuracy = T P + T N

T P + FP + FN + T N

T rue Positive Rate = T P

T P + FN

Table 4 List of relevant log-mel spectral feature extraction parameters

Parameter Value

Audio sampling rate 16 kHz

Window size 512

Window overlap 352

Mel bins 64

Output bit width 8



FO
R A

PPROVAL

Cogn Comput

Fig. 4 Example evolution of the reservoir readout signals for an audio
file with 3 foreground dog barks and background people speaking.
The input log-mel energies (top) induce a behavior in the reservoir

obtained from FPGA measurements (bottom) denoted as the Immedi-
ate Category Score (ICS) for each available class

T rue Negative Rate = T N

T N + FP
(8)

where the Accuracy is referred to the overall accuracy of the
method (successes/total points), parameters True Positive
Rate and True Negative Rate (also known as sensitivity
and specificity, respectively) are related to how well the
positives (and negatives) are differentiated respectively.
Finally, T P , T N , FP , and FN in (8) are referring to true
positives, true negatives, false positives, and false negatives
respectively. These three results are estimated for different
post-processing configurations in the “Results” Section.

In contrast, in the case of the Urban Sound database, we
evaluate the mean top 1 and top 2 overall accuracy.

Results

This section reports inference performance metrics obtained
from the proposed RC implementation applied to the input
data described in “Audio Event Detection Database.” In
order to evaluate the model performance for the audio
events, log-mel spectral features are obtained from a fixed
point hardware simulation, relevant parameters are listed in

Table 5 Confusion matrix for an 8-bit 192-neuron reservoir

Gun-shot Ambient

Gun-shot 85 0

Ambient 18 113

Post-processing parameters: yth = 1.11, D(silence, ambient, gunshot)
= (64, 64, 1)

Table 4 (see e.g. [30] for hardware implementation). This
feature extraction block provides 64 8-bit features. The RC
subsystem is implemented in an Intel Cyclone V FPGA
and the post-processing stage is performed offline, i.e., the
computation of (6) and (7) is done externally.

In all cases, input-to-reservoir binary weights ξij corre-
spond to the best known model sampled from a random
uniform distribution. In Fig. 4, we show the reservoir evo-
lution for a specific sound. The feature extraction block
(top graph) along with the readout behavior extracted from
FPGA measurements induced by an input log-mel spectro-
gram. There are two simultaneous sources: foreground dog
barking and background people speaking. Although the dog
bark (DB) class is correctly predicted, the background peo-
ple speaking is being classified as children playing (CP),
which is reasonable since it is the most similar class.

The results associated to the gun-shot detection database
are shown in Tables 5 and 6. Firstly, the confusion matrix of
a 192-node reservoir is shown in Table 5 while in Table 6 we
illustrate the effect of varying the threshold yth in the same
reservoir model.

Table 6 Performance metric values (in %) for an 8-bit 192-neuron
reservoir with different post-processing parameters

yth = 1.11 yth = 1.0 yth = 0.9

Accuracy 91.6 96.3 94.9

Sensitivity 82.5 94.2 94.2

Specificity 100 98.2 95.6

The selected category factors are D(silence, ambient, gunshot) =
(64, 64, 1)



FO
R A

PPROVAL

Cogn Comput

Fig. 5 Urban Sound train (left)
and test (right) set mean metrics
obtained from 10-fold
cross-validation. Reduction
factors have been selected so
that they are proportional to the
training set occurrences for each
class (see text)

For the case of the multiclass Urban Sound database,
mean top 1 and top 2 accuracies1 averaged over the 10
different test set choices are shown in Fig. 5. These results
have been obtained by randomly selecting 250,000 training
frames and frame labels. Then, each reduction factor has
been selected so that it is proportional to the number of
occurrences of the corresponding class in the training set.
For example, if class A has a training samples, then its
reduction factor is a/250, 000. The top 1 accuracy results
shown in Fig. 5 imply a similar or higher accuracy than
decision trees (J48) and k-NN (k = 5) methods applied to
the same problem [21] and using the same slice duration
of 4 s.

In Fig. 6, we analyze both the size and energy efficiency
of the FPGA implementation. The number of parameters
and MAC operations per inference needed is relatively
low when compared to a CNN hardware implementation
oriented to audio processing [31]. While the order of magni-
tude of MAC operations per inference is over 1000 million
for the case of CNNs [31], the reservoir implementation
needs between 10M and 50M MACs per inference (dashed
blue line in Fig. 6). As can be appreciated, there is a trade-
off between the reservoir size and energy efficiency with
respect to the overall accuracy which is represented in Fig. 6
(in data points text and dotted orange lines). Nevertheless,
there is a decrease of about 15% accuracy in the 12,288-
node reservoir model when compared to different CNNs
[32] without data augmentation.

With respect to the energy efficiency, there exists a rele-
vant gap with respect to recently published on-chip imple-
mentations of sound recognition systems as the work in [33]
related to a real-time bird sound recognition application.
In their application, all computations are done by a Texas
Instruments TMS320F2812 microcontroller and the classi-
fier stage consumes 35 μ J per inference at 50-MHz clock
frequency, which is about 40× less energy efficient than the

1Top-N accuracy is computed by interpreting as correct those
predictions for which the ground truth is one of the N most likely
categories.

proposed solution implemented in a Cyclone V FPGA for
the case N = 12, 288 depicted in Fig. 6.

Conclusions

This work is motivated by the increasing demand in
edge intelligence devices, which avoid unnecessary data
transfers to the cloud because of their ability to select the
data/metadata that is relevant or worth capturing for post-
processing in real time. In this regard, the proposed reservoir
computing system (Fig. 1) is much smaller and requires
much less MAC operations and parameters as compared
to state of the art network architectures [32] (see Fig. 6),
which is ultimately related to latency, power dissipation,
and energy consumption. It is also shown that the proposed
sound recognition hardware classifier is up to 40× more
energy-efficient than a recently published sound recognition

Fig. 6 Number of needed MACs per inference (left axis) and reservoir
energy efficiency (right axis) with corresponding test accuracy for each
data point (inner text) for different reservoir sizes (bottom axis). Ideal
approximation for the energy efficiency corresponds to the energy
consumed by n 64-node reservoirs, with n = N/64



FO
R A

PPROVAL

Cogn Comput

solution based on the use of a low-cost and low-power ARM
Cortex-M4F microcontroller [33]. So that an attractive
possibility would be to include RC dedicated hardware to
similar system-on-chip architectures to potentially reduce
energy consumption in certain tasks. Note that here RC has
been applied to audio event detection but it is not limited
to audio recognition. Similar systems have been applied to
time series prediction [15] or image classification [34]. At
the same time, in terms of error performance, traditional
machine learning models as kNN or decision trees show
similar or a lower accuracy for the specific multi-class audio
event detection system.

Additionally, it is simple enough to be a candidate for
a variety of battery-powered edge scenarios, e.g., always-
on inference scenarios [5] or RC hardware acceleration or
co-processing in system-on-chip architectures [35], which
include mobile phones, smartwatches, or smart sensors.
Potential use cases might include simple audio tagging
or detection, monitoring of physiological data [36], and
channel equalization [37]

At the algorithm level, we showed the cyclic reservoir
is good enough to be used for temporal feature expansion
on a per-frame basis. However, generalization in the Urban
Sound 8K dataset is particularly difficult because back-
ground and foreground samples are mixed and some of them
have noisy environments or additional background sources.
Test set accuracy might be improved using e.g. noise reduc-
tion, data augmentation techniques [32, 38], or an alterna-
tive post-processing technique. To summarize, in this work,
we have shown an ultra-low-power audio event detection
system with an energy efficiency in the sub-μJ/Inf range
that is obtained by optimizing the reservoir structure for
building a totally parallelized ANN. These characteristics
make the system optimal for edge intelligence applications.

Funding This work has been funded by a research grant from Endura
Technologies and by the Ministerio de Ciencia e Innovación
(MICINN/FEDER, UE), Spain, under project TEC2017-84877-R.

Compliance with Ethical Standards

Conflict of Interest The authors at the Balearic Islands University
received a research grant from Endura Technologies (San Diego, CA,
USA).

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. Chen D, Cong J, Gurumani S, Wm Hwu, Rupnow K, Zhang
Z. Platform choices and design demands for IoT platforms: cost,
power, and performance tradeoffs. IET Cyber-Physical Systems:
Theory & Applications. 2016;1(1):70–77.

2. O’Leary DE. Artificial intelligence and big data. IEEE Intelligent
Systems. 2013;28(2):96–99.

3. Silva DA, Stuchi JA, Violato RPV, Cuozzo LGD. Exploring
convolutional neural networks for voice activity detection. In:
Cognitive technologies. Springer; 2017. p. 37–47.

4. Zhang Y, Suda N, Lai L, Chandra V. Hello edge: keyword
spotting on microcontrollers. arXiv:171107128. 2017.

5. Liu B, Wang Z, Zhu W, Sun Y, Shen Z, Huang L, Li
Y, Gong Y, Ge W. An ultra-low power always-on keyword
spotting accelerator using quantized convolutional neural network
and voltage-domain analog switching network-based approximate
computing. IEEE Access. 2019;7:186456–186469.

6. Maass W, Natschläger T, Markram H. Real-time computing
without stable states: a new framework for neural computation
based on perturbations. Neural Computation. 2002;14(11):2531–
2560.

7. Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science.
2004;304(5667):78–80.

8. Lukoševičius M, Jaeger H. Reservoir computing approaches
to recurrent neural network training. Computer Science Review.
2009;3(3):127–149.

9. Maass W. Liquid state machines: motivation, theory, and
applications. In: Computability in context: computation and logic
in the real world. World Scientific; 2011. p. 275–296.

10. Appeltant L, Soriano MC, Van der Sande G, Danckaert J, Massar
S, Dambre J, Schrauwen B, Mirasso CR, Fischer I. Information
processing using a single dynamical node as complex system.
Nature Communications. 2011;2(1):1–6.

11. Scardapane S, Butcher J, Bianchi F, Malik Z. Advances in bio-
logically inspired reservoir computing. Cognitive Computation.
2017;9(3):295–296.

12. Katumba A, Freiberger M, Bienstman P, Dambre J. A multiple-
input strategy to efficient integrated photonic reservoir computing.
Cognitive Computation. 2017;9(3):307–314.

13. Gallicchio C, Micheli A. Echo state property of deep reservoir
computing networks. Cognitive Computation. 2017;9(3):337–350.

14. Alomar M, Skibinsky-Gitlin ES, Frasser CF, Canals V, Isern E,
Roca M, Rosselló JL. Efficient parallel implementation of reservoir
computing systems. Neural Comput & Applic: 32 1–15. 2017.

15. Rodan A, Tino P. Minimum complexity echo state network. IEEE
Trans Neural Netw. 2010;22(1):131–144.

16. Alomar ML, Soriano MC, Escalona-Morán M, Canals V,
Fischer I, Mirasso CR, Rosselló JL. Digital implementation of a
single dynamical node reservoir computer. IEEE Transactions on
Circuits and Systems II: Express Briefs. 2015;62(10):977–981.

17. Penkovsky B, Larger L, Brunner D. Efficient design of hardware-
enabled reservoir computing in fpgas. Journal of Applied Physics.
2018;124(16):162101.

18. Larger L, Soriano MC, Brunner D, Appeltant L, Gutiérrez
JM, Pesquera L, Mirasso CR, Fischer I. Photonic information
processing beyond turing: an optoelectronic implementation of
reservoir computing. Optics Express. 2012;20(3):3241–3249.

19. Skibinsky-Gitlin ES, Alomar ML, Isern E, Roca M, Canals
V, Rossello JL. Reservoir computing hardware for time series
forecasting. In: 2018 28th international symposium on power and
timing modeling, optimization and simulation (PATMOS). IEEE;
2018. p. 133–139.

20. Skibinsky-Gitlin ES, Alomar ML, Canals V, Frasser CF, Isern
E, Galán-Prado F, Morán A, Roca M, Rosselló JL. Fpga-based
echo-state networks. In: International conference on time series
and forecasting. Springer; 2018. p. 135–146.

21. Salamon J, Jacoby C, Bello JP. A dataset and taxonomy for urban
sound research. In: Proceedings of the 22nd ACM international
conference on multimedia; 2014. p. 1041–1044.

http://arxiv.org/abs/171107128


FO
R A

PPROVAL

Cogn Comput

22. Costoya AM, Frasser CF, Roca M, Rossello JL. Energy-efficient
pattern recognition hardware with elementary cellular automata.
IEEE Transactions on Computers. 2019.

23. Jaeger H. The echo state approach to analysing and training
recurrent neural networks. GMD Report. 2001.

24. Maass W, Natschläger T, Markram H. Real-time computing
without stable states: a new framework for neural computation
based on perturbations. Neural Comput. 2002;14(11):2531–
2560.

25. Matsubara T, Torikai H, Hishiki T. A generalized rotate-
and-fire digital spiking neuron model and its on-fpga learning.
IEEE Transactions on Circuits and Systems II: Express Briefs.
2011;58(10):677–681.

26. Nouri M, Jalilian M, Hayati M, Abbott D. A digital neuro-
morphic realization of pair-based and triplet-based spike-timing-
dependent synaptic plasticity. IEEE Transactions on Circuits and
Systems II: Express Briefs. 2018;65(6):804–808.

27. Yilmaz O. Symbolic computation using cellular automata-based
hyperdimensional computing. Neural Comput. 2015;27(12):2661–
2692.

28. Corporation A. Nios ii processor reference handbook. 2008.
29. Xilinx I. Microblaze processor reference guide. reference manual

23. 2006.
30. Han W, Chan CF, Choy CS, Pun KP. An efficient

mfcc extraction method in speech recognition. In: 2006 IEEE
international symposium on circuits and systems. IEEE; 2006. p.
4–pp.

31. Meyer M, Cavigelli L, Thiele L. Efficient convolutional neural
network for audio event detection. arXiv:170909888. 2017.

32. Salamon J, Bello JP. Deep convolutional neural networks and data
augmentation for environmental sound classification. IEEE Signal
Processing Letters. 2017;24(3):279–283.

33. Kücüktopcu O, Masazade E, Ünsalan C, Varshney PK.
A real-time bird sound recognition system using a low-cost
microcontroller. Appl Acoust. 2019;148:194–201.

34. Schaetti N, Salomon M, Couturier R. Echo state networks-based
reservoir computing for mnist handwritten digits recognition.
In: 2016 IEEE Intl conference on computational science and
engineering (CSE) and IEEE intl conference on embedded
and ubiquitous computing (EUC) and 15th intl symposium on
distributed computing and applications for business engineering
(DCABES). IEEE; 2016. p. 484–491.

35. Saleh R, Wilton S, Mirabbasi S, Hu A, Greenstreet M, Lemieux
G, Pande PP, Grecu C, Ivanov A. System-on-chip: reuse and
integration. Proc IEEE. 2006;94(6):1050–1069.

36. Escalona-Morán MA, Soriano MC, Fischer I, Mirasso CR.
Electrocardiogram classification using reservoir computing with
logistic regression. IEEE Journal of Biomedical and health
Informatics. 2014;19(3):892–898.

37. Patra JC, Pal RN. A functional link artificial neural network for
adaptive channel equalization. Signal Process. 1995;43(2):181–195.

38. Inoue T, Vinayavekhin P, Wang S, Wood D, Greco N, Tachibana
R. Domestic activities classification based on cnn using shuffling
and mixing data augmentation. DCASE 2018 Challenge. 2018.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/170909888

	Hardware-Optimized Reservoir Computing System for Edge Intelligence Applications
	Abstract
	Introduction
	The Optimized Hardware Reservoir
	Reservoir Computing Principles
	The Cyclic Reservoir
	Training on a Per-Frame Basis
	The Optimized Reservoir Architecture

	Audio Event Detection Database
	Gun-Shot Detection Database
	Multiclass Audio Database
	Statistical Performance Metrics

	Results
	Conclusions
	Compliance with Ethical Standards
	References




