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ABSTRACT

This paper evaluates the Weather Research and Forecasting model (WRF) sensitivity to eight different

combinations of cumulus, microphysics, and planetary boundary layer (PBL) parameterization schemes over

a topographically complex region in southern Spain (Andalusia) for the period 1990–99. The WRF config-

uration consisted of a 10-km-resolution domain nested in a coarser domain driven by 40-yr European Centre

for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data, with spectral nudging above the PBL

employed over the latter domain. The model outputs have been compared at different time scales with an

observational dataset that comprises 438 rain gauges and 152 temperature stations with records of both daily

maximum and minimum temperatures. To reduce the ‘‘representation error,’’ the validation with observa-

tions has been performed using a multistep regionalization that distinguishes five precipitation regions and

four temperature regions.

The analysis proves that both cumulus and PBL schemes have a crucial impact on the description of pre-

cipitation in Andalusia, whereas no noticeable differences between microphysics options were appreciated.

Temperature is described similarly by all the configurations, except for the PBL choice affecting minimum

values.

WRF provides a definite improvement over ERA-40 in the climate description in terms of frequency,

spatial distribution, and intensity of extreme events. It also captures more accurately the annual cycle and

reduces the biases and the RMSE for monthly precipitation, whereas only a minor enhancement of these

features was obtained for monthly-mean maximum and minimum temperatures. The results indicate that

WRF is able to correctly reproduce Andalusian climate and produces useful added-value information for

climate studies.

1. Introduction

The climate response to global warming varies from

region to region; thus, regional projections of scenarios

are essential to determine its repercussions for pop-

ulation and environment, since both are mainly affected

by local changes. General circulation models (GCMs)

have been extremely useful in providing comprehensive

predictions of large-scale climate and general circulation

(Gillett and Thompson 2003; Osborn 2004; Solomon et al.

2007); however, they are still unable to resolve local cir-

culation dynamics. The computational costs of increasing

spatial resolution in GCMs are still prohibitive and alter-

native approaches have been promoted, such as regional

climate models (RCMs), which enable high-resolution

runs over restricted areas (Dickinson et al. 1989; McGregor

1997; Giorgi 2006; Laprise 2008).

Prior to making use of RCMs for high-resolution

projections, it is crucial that model estimates be evaluated
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against observational data to assess their reliability in

capturing spatial and temporal distributions (Leung

et al. 2003; Laprise et al. 2008; Kostopoulou et al. 2009).

Despite the importance of model validation, there is no

consensus on the evaluation procedure, and methodo-

logical improvement remains a major task for climate

modelers. Furthermore, the evaluation is still hindered

by a number of factors. The increase of RCM resolution

is much faster than the development of climate obser-

vation networks, and very few regions are covered by a

dense enough observational system. A useful approach

is that of using observational gridded datasets that fa-

cilitate the evaluation (Evans and McCabe 2010). Nev-

ertheless, available gridded analyses, such as the

Climatic Research Unit time series 1.2 (CRU TS 1.2)

(Mitchell et al. 2004), are sometimes created with very

sparse observations in certain areas, such as southern

Spain. The lack of both consensual and systematic metho-

dologies and the scant observational data at researchers’

disposal has led to several validation strategies.

Traditionally, model results are directly compared

with in situ observations, although this is not a like-with-

like comparison (Rivington et al. 2008). Site-specific

measurements describe conditions at single stations af-

fected by very local characteristics, whereas the RCM

outputs define average values of the variables over a grid

box. In areas with complex terrain, the ‘‘representation

error’’ is of particular importance because the station

might be at the extreme of the cell topographical di-

versity. Accordingly, the most appropriate way to vali-

date a model is to use upscaled observations (Göber

et al. 2008). Other techniques have been suggested, such

as adjusting model outputs, either through a lapse rate

depending on elevation differences between the site and

the model grid point (Moberg and Jones 2004) or using

a downscaling factor calculated from deviations between

observational time series and model estimates (Rivington

et al. 2007). Although the comparability of these adjusted

outputs with observations remains unproven.

To upscale observations, regionalization procedures

have been put forward within the framework of RCM

evaluation for different variables (Jiménez et al. 2008;

Caldwell et al. 2009; Kostopoulou et al. 2009). Some

authors have highlighted the convenience of regional-

ization in terms of model validation because it filters

very local station effects that models cannot resolve

(Bunkers et al. 1996; Reid and Turner 2001). Original

climate divisions (Köppen 1923; Thornthwaite 1931)

have the advantage of direct applicability and simplicity,

even though they are formulated in a subjective way. To

reduce subjectivity several methods have been recently

employed to attempt climate regionalization using

objective techniques across the globe (Bärring 1987;

Fovell 1997; Gerstengarbe et al. 1999; Romero et al.

1999; Unal et al. 2003).

The Weather Research and Forecasting model (WRF;

Skamarock et al. 2008) has been used to achieve dy-

namical downscaling, and this paper presents its evalu-

ation as a nested climate model over Andalusia (southern

Spain). Located at the very southern part of Europe

(358–408N, 88–18W), Andalusia is largely influenced by

three differentiated masses: the Atlantic Ocean, the

Sahara desert, and the Mediterranean Sea (Fig. 1). The

Intergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report (AR4) (Solomon et al. 2007)

predicts this area to be among those most affected by

climate change, with marked precipitation decrease and

summer warming. In addition, it is an extremely com-

plex terrain region with mountains exceeding 3000 m

within 40 km of the Mediterranean coast, strong surface

extremes, arid regions, and very confined climate re-

gimes defined by mesoscale weather systems.

Many of these features occur on spatial scales un-

resolved by the model, and so require empirical param-

eterization. A wide range of parameterization schemes

is provided by WRF along with other configuration

options so, considering the complex region under in-

vestigation, optimizing the configuration is a key factor

for climate research over this area. Seldom is a configu-

ration optimal for all the locations, for all the variables,

and at every time scale (Fernández et al. 2007; Borge

et al. 2008); nonetheless, a compromise can be made

to adequately describe the climate over the entire

region. Beyond the combination of parameterization

schemes, other factors should be explored, such as the

driving data reliability or the influence of the domain

design. Consequently, setting up the model correctly

is a challenging task involving many aspects that must

be considered.

Several studies have focused on selecting appropriate

configurations or particular WRF parameterizations for

varying conditions and applications (Jankov et al. 2005;

Gallus and Bresch 2006; Kain et al. 2006; Borge et al.

2008; Deb et al. 2008; Hong et al. 2009; Kwun et al. 2009;

Li and Pu 2009; Nolan et al. 2009), but because of

computational costs, little effort has been devoted to this

topic for interannual studies and different physical pa-

rameterizations (Bukovsky and Karoly 2009). For cli-

mate purposes, longer periods are preferable when

identifying configurations that describe as correctly as

possible the local climate rather than particular periods.

Accordingly, a 10-yr period (1990–99) has been selected

in this study to test the model sensitivity for both wet and

dry years. Although it also might be argued that longer

periods are still convenient to actually represent climate,

this 10-yr period permits obtaining robust results that
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are not restricted to the specific conditions of a particu-

lar year.

The outline of the paper is as follows: In section 2,

observational and reanalysis data are presented to-

gether with the quality controls and the model setup. A

multistep regionalization procedure is described in sec-

tion 3. Reviewing different simulations and their per-

formances over the region, as presented in section 4,

helps to evaluate the most appropriate configuration in

general terms. The final section summarizes and pro-

vides a discussion of the main findings of the study.

2. Model setup and data

a. Model description and configuration

Version 3.1.1 of WRF was used for dynamical down-

scaling. This model provides many different physical

and running options for a wide spectrum of applications

at very different scales, from large-eddy simulation

(Catalano and Cenedese 2010; Catalano and Moeng

2010) to climate simulations (Sertel et al. 2009; Zhang

et al. 2009). Physical options are composed of parame-

terization schemes to describe subgrid-scale processes,

such as cumulus, microphysics, planetary boundary

layer (PBL) turbulence, long-wave and short-wave ra-

diation, and land surface models.

Initial and boundary conditions were obtained from

the 40-yr European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40). Other

reanalysis datasets, such as the National Centers for

Environmental Prediction–National Center for Atmo-

spheric Research Reanalysis Project (NNRP), were also

evaluated but were discarded because they showed large

sea surface temperature (SST) cold biases in the western

Mediterranean that induced unacceptable deviations in

inland temperatures. A 6-h interval was chosen to up-

date boundary conditions, as suggested by Denis et al.

(2003), for an integration with similar spatial resolution.

The original T159 spectral resolution, with 11 vertical

levels and four soil levels, was interpolated to a 1.1258 3

1.1258 regular latitude–longitude resolution.

In WRF 3.1, spectral nudging was included to reduce

the effects of domain location and geometry and to

prevent synoptic-scale climate drift generated by the

formulation of lateral boundary conditions over an open

system during long-term simulations (Miguez-Macho

et al. 2004; Radu et al. 2008). The integration area is

known to affect internal variability (Seth and Giorgi

1998; Christensen et al. 2001), and spectral nudging re-

duces the impact of the domain design but retains large-

scale features so that the model domain choice is not

that critical.

The spatial setup of WRF was composed of two do-

mains, a 30-km-resolution parent domain with 130 3 120

grid points and a 10-km one-way nested domain with

124 3 112 grid points (Fig. 1). The time steps were

recommended for these horizontal resolutions, that is,

180 and 60 s, respectively. Both domains had 35 vertical

levels arranged according to terrain-following hydro-

static pressure vertical coordinates. This study focuses

on high-resolution integrations, so only the 10-km do-

main was analyzed. All the WRF simulations were ini-

tialized on 1 June 1989 and ended on 31 December 1999.

Although previous studies (Giorgi and Mearns 1999;

Fernández 2004) proved that initial values have minor

effects on results, a 7-month spinup period was used to

FIG. 1. (a) WRF domains (dotted squares) and resolutions. Region of interest (solid line). (b) Topographical features of southern Spain.

1 NOVEMBER 2011 A R G Ü E S O E T A L . 5635



ensure model equilibrium between external forcing and

internal dynamics, especially in terms of soil variables,

which normally require longer spinups. Therefore, the

period 1990–99 was analyzed.

Eight simulations were run using spectral nudging

above the PBL and only over the coarse domain. The

spectral nudging employed was reasonably weak, setting

the wavenumber to 1 (;3900 km) and the frequency to

24 h. Table 1 details the different schemes that were

combined, varying the cumulus [Kain–Fritsch (KF) and

Betts–Miller–Janjic (BMJ)], the PBL [Yonsei Univer-

sity (YSU), Mellor–Yamada–Janjic (MYJ), and asym-

metric convective model version 2 (ACM2)], and the

microphysics [WRF single-moment three-class (WSM-3)

and Thompson et al.]. Radiation schemes were set to the

Community Atmosphere Model (CAM) for both long-

wave and shortwave, owing to the fact that it permits

modifying greenhouse gas (GHG) concentrations and

thus their effect on radiation. Regarding the land surface

model (LSM), only the Noah LSM was used because it is

widely adopted for climate studies (Sertel et al. 2009;

Zhang et al. 2009). Some preliminary tests were performed

using Grell 3D cumulus and the five-layer soil model,

but these were clearly outperformed by other schemes

and thus were discarded at the first stages of the study.

The accuracy of the model configured with a certain

scheme cannot be uniquely attributed to a single pa-

rameterization but rather to the combination of them,

since feedbacks are usually as important as the schemes

themselves. Furthermore, the suitability of a specific

configuration strongly depends on the region, the season,

or even the particular event considered and hence, there

is no single configuration appropriate for every situation.

Since testing all the possible combinations of physics

options is not computationally affordable, a representa-

tive sample of the physics packages was chosen with a

different level of complexity and formulation.

The original formulation of WRF was modified in the

version Climate WRF (clWRF) at the University of Can-

tabria (Fita et al. 2010), which introduces many addi-

tional options. For instance, it permits updating GHG

concentrations or computing daily maximum tempera-

ture (Tmax) and minimum temperature (Tmin) at every

time step, making model outputs much more compara-

ble to observational data.

b. Observational data

Model outputs were validated against an observa-

tional database retrieved from the regional government

of Andalusia (Subsistema de Climatologı́a Ambiental,

Consejerı́a de Medio Ambiente, Junta de Andalucı́a). It

consists of homogeneous daily maximum and minimum

temperature time series from 152 stations, and daily

rainfall series from 438 gauges across Andalusia (Fig. 2),

with coverage throughout 1990–99. The period was se-

lected as a compromise between the number of available

stations and the maximum possible length to represent

climate features. Initially, the available dataset com-

prised 1821 precipitation series and 850 temperature

series that were filtered on the basis of a 10% threshold

of missing values for the selected period. Nevertheless,

the discarded series have not been completely rejected

TABLE 1. Parameterization combinations to perform the physics

ensemble with WRF.

Cumulus PBL Microphysics ID

BMJ MYJ WSM-3 BM3

BMJ MYJ Thompson et al. BMT

BMJ ACM2 WSM-3 BA3

BMJ ACM2 Thompson et al. BAT

BMJ YSU WSM-3 BY3

BMJ YSU Thompson et al. BYT

KF MYJ WSM-3 KM3

KF MYJ Thompson et al. KMT

FIG. 2. Regions obtained with the multistep methodology for (a) precipitation: W (dark green), C (red), N (light

green), S (yellow), and E (blue); (b) temperature: CO (red), HL (yellow), ML (green), and LL (blue).

5636 J O U R N A L O F C L I M A T E VOLUME 24



and those containing more than 70% coverage have

been used to fill the gaps of the final selection using

a multiple linear regression method with the five most

correlated stations. Completeness of the observational

series is required not for direct comparison with model

outputs but for the regionalization methodology de-

scribed in the next section.

3. Regionalization methodology

Clustering analysis (CA; Kalkstein et al. 1987) and

principal component analysis (PCA; Preisendorfer

1988) are the most extended methodologies to classify

stations into regional divisions (Richman and Lamb

1985; Fovell and Fovell 1993; Lund and Li 2009). Both

procedures have advantages and shortcomings in re-

lation to climate regionalization, as shown below for

PCA and two different CA algorithms:

1) PCA reduces information redundancy and keeps

only the most important variability modes, leading

to a more comprehensive division. However, the

fuzzy nature of results makes it difficult to determine

regional boundaries.

2) Hierarchical or agglomerative CA methods succes-

sively merge clusters based on a similarity measure

starting from as many single-element clusters as

initial objects and finally reaching one cluster,

accommodating all the stations. Several solutions

varying the number of clusters are proposed and an

optimal configuration can be selected through tests

that measure the clusters’ internal cohesion and

external isolation. Nonetheless, the formulation pre-

vents the exchange of objects between clusters once

they have been merged and therefore certain objects

might be misplaced.

3) Nonhierarchical CA algorithms such as k-means

require prespecification of the number of clusters

and their centroids (seeds) and thus are not suitable

for determining an appropriate configuration by

themselves. Conversely, they are based on the ex-

change of objects and enable cluster redistribution.

In this paper, a multistep methodology is proposed,

consisting of the consecutive application of PCA and

two CA algorithms, overcoming the problems that each

method presents. The procedure permits, using the re-

sults from each analysis, to carry out the subsequent

steps, removing most of the subjectivity associated with

researcher’s decisions, such as the number of regions or

their centroids.

Standardization problems and the rare coincidence of

temperature and precipitation records encouraged us to

process these variables independently. The approaches

to process both temperature and precipitation were very

similar, although some minor modifications were in-

troduced in the data preparation (e.g., precipitation was

screened) because of obvious differences in the vari-

ables’ characteristics.

At a first level, the covariance matrix obtained from

daily values over the period 1990–99 was analyzed using

an S-mode PCA to retain principal modes of variability

and discard possible information redundancy (Fovell

1997). The North rule of thumb, based on the eigenvalue

degeneration (North et al. 1982), was adopted here and

the resulting significant principal components (PCs)

were varimax rotated to increase spatial coherence.

Rotated normalized loadings were then processed to

classify the stations via a two-step CA (Milligan 1980)

comprising an agglomerative method to set the number

of clusters and their starting seeds, followed by a non-

hierarchical k-means algorithm. This strategy takes ad-

vantage of both methods and reduces their respective

imperfections.

Regarding the hierarchical method, the simplest and

most extended squared Euclidean distance was chosen

to measure the similarity between objects and clusters.

According to previous results (Kalkstein et al. 1987;

Gong and Richman 1995), the average linkage algo-

rithm was selected to assign objects membership to

clusters because it does not tend to create similar-size

groups nor huge ‘‘hungry’’ clusters as other methods do.

Hierarchical algorithms merge clusters in new ones

based on the principle of maximizing intracluster simi-

larity and minimizing intercluster likeness. The ratio be-

tween these two values varies as the clusters are merged

and tests, such as pseudoF (Calinski and Harabasz 1974),

measure it at every step. This way, pseudoF led us to

define an optimal number of divisions when a local max-

imum was attained.

Next, the clusters centroids were calculated using the

rotated normalized loadings and fed into a nonhierar-

chical k-means CA along with the suitable number of

clusters, so relocation of the stations is performed.

As stated before, Tmin, Tmax, and precipitation have

very different features and hence separate preprocess-

ing of data is advisable. Further, these three variables

will yield two independent regionalizations—one for

temperature and one for precipitation—that must be

analyzed individually.

a. Regionalization of precipitation

Precipitation in Andalusia is mainly concentrated in

short rain events and shows an explicit annual cycle with

very dry summers. Therefore, it seems appropriate to

apply a filter so that dry days at most of the locations are

removed and accurate rainfall regionalization can be
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achieved. The approach suggested by Romero et al.

(1999) for a similar region was followed, consisting of

retaining only those days when the precipitation was

larger than 5 mm for at least 5% of the stations, resulting

in 654 days over the 10-yr period.

The covariance S-mode PCA computed with this re-

duced precipitation dataset produced five significant

principal modes that in total explained 57.75% of the

variance. According to the hierarchical algorithm, the

pseudoF indicated that a five-cluster organization is

more appropriate for precipitation. Higher numbers of

clusters are also suggested by the test (12 and 17), but

they over fragmented this small region. After the k-

means CA, some stations were misplaced and clearly

isolated with respect to the surrounding region, so they

were relocated on the basis of an inverse distance

weighting over the nearest five stations. Only 6 of 438

stations needed such reassignment. Therefore, it is rea-

sonable to assume that the procedure does not notice-

ably affect the results; however, the spatial coherence of

the classification was enhanced.

The final precipitation regionalization is shown in Fig.

2a, generating a coherent structure of climate divisions

corresponding to the topography and the main features

of the dominating circulation. An evident zonal parti-

tioning can be observed that accounts for the gradual

influence of fronts coming from the Atlantic Ocean and

systems generated in the Mediterranean Sea. Moreover,

topography effects can be seen in the boundaries of re-

gions north (N), south (S), and east (E), delimited by the

Sierra Nevada ridge and the Subbetic Mountain system.

The eastern precipitation regime is clearly distinguished

from the other Andalusian rainfall patterns; indeed, this

semiarid-to-arid area, with markedly convective char-

acter and differentiated dynamical precipitation, is ac-

curately singled out by the regionalization technique.

An almost identical regionalization was obtained in one

of the solutions proposed by Romero et al. (1999), with

minor differences probably caused by the inclusion of

the whole Spanish Mediterranean coast in their study.

b. Regionalization of temperature

Unlike precipitation, temperature was not screened

and the full-length series were used to characterize re-

gions. The temperature climate division was performed

using both Tmax and Tmin because these two variables are

not equally affected by the same factors (i.e., stratification

versus turbulence, surface fluxes, elevation). For exam-

ple, the Tmax at two stations might present a similar

evolution and magnitude, but the Tmin might differ con-

siderably. Therefore, they must be considered separately

in the PCA to avoid masking the information provided

by one of the temperature extremes by the other.

North’s rule of thumb indicated five significant com-

ponents for Tmax (94.92% of the total variance ex-

plained) and three for Tmin (91.37% of the total variance

explained). The normalized loadings were varimax ro-

tated, merged, and fed into the average linkage clus-

tering based on an 8D distance that includes both Tmax

and Tmin rotated loadings. The pseudoF test suggested

that a four-cluster division is the simplest configuration

among those recommended. The k-means were calcu-

lated afterward using the seeds obtained from the hier-

archical CA to permit the exchange of stations between

regions. The relative sparseness of the temperature

stations in comparison to precipitation leads to more

heterogeneous regions, also influenced by the fact that

temperature directly hinges on elevation, and hence the

regions are considerably scattered. Consequently, the

relocation of isolated stations was skipped here since it

would substantially reshape the regions because bound-

aries are not as defined as they were for precipitation.

As shown in Fig. 2b, the coastal (CO) region is dis-

tributed along the coast (red); the highlands (HL) region

includes stations at high altitudes ranging from 760 to

1350 (yellow); stations located in the lower Guadalquivir

River basin and the interior of the eastern part (blue)

conform the lowlands (LL); and the midlands (ML) re-

gion (green) covers those internal stations that are sit-

uated in the mountains but at lower elevations than the

highlands.

Summarizing, 438 rain gauges were divided into five

regions and 152 temperature stations were classified in

four regions. This regionalization was used to validate

WRF outputs in a comprehensive way and overcome the

issue related to the representation error, as shown in the

next section.

4. Model evaluation and sensitivity tests

In this section, different parameters that were calcu-

lated to validate the model at varying time scales against

the observations, grouped in the regions that were

obtained previously for precipitation (five regions) and

temperature (four regions), are shown.

A key motivation to use dynamical downscaling is to

increase the spatial resolution over a certain area, which

should have a noticeable impact on the distribution and

magnitude of the extreme events. To evaluate the im-

provement introduced by WRF in this respect, different

percentiles were calculated as a representation of the

probability distribution function (PDF) and compared

against observations. From a climate point of view,

it is interesting to note that WRF reproduces the PDF

of daily values rather than the timing of particular

events.
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In addition, monthly means were calculated to assess

the capability to represent the annual cycle and highlight

the seasons when the largest differences between the

WRF results and observations occur. Correlation, root-

mean-square error (RMSE), and mean absolute error

(MAE) were computed to ascertain whether the model

is able to capture interannual temperature variability.

By contrast, correlation, relative RMSE (RMSE divided

by the monthly-mean precipitation), and bias were an-

alyzed for precipitation. Different parameters were

calculated for precipitation and temperature in accor-

dance with their different nature. These parameters, along

with the percentile values, let us determine the most

suitable physics configuration for southern Spain in

terms of reproducing climate features for both temper-

ature and precipitation using WRF.

Results are shown within climate zones, and the spa-

tial distribution of those parameters is also presented for

the selected configurations with the aim of discovering

possible WRF limitations over Andalusia.

a. Precipitation results

1) DAILY VALUES OF PRECIPITATION

The percentiles (50th, 60th, 70th, 75th, 80th, 90th, 95th,

and 99th) of daily events were computed, taking into

account rainy days defined by a 0.1 mm day21 thresh-

old. Figure 3 shows the percentiles for WRF and ob-

servations corresponding to each region. The gray line

represents a perfect performance, delimiting over- and

underestimation. Percentiles obtained from ERA-40 are

also presented.

Throughout the five regions identified, WRF tends to

underestimate precipitation extremes, except for the

south region, where the combination BA3 (refer to Table 1

for expansions of parameterization combinations) cap-

tures remarkably well all the percentiles calculated, with

a slight overestimation. Overall, this configuration pro-

vides the most accurate results, yielding values within

10% of the magnitude of the observed events for even

the most extreme conditions (99th percentile). Some

other physics combinations (BY3, BAT, and BYT) per-

form similarly or even better for particular areas or

thresholds. While the cumulus parameterization seems

to have a noticeable influence in describing extremes,

microphysics appears to have a minor impact on this

climate feature, with no regional superiority among the

schemes, apart from the south and east areas, where

WSM3 produces slightly better results. The south and

east regions are located along the Mediterranean coast

and therefore more affected by convective precipitation.

A correct partition of precipitation into convective and

FIG. 3. Daily precipitation percentiles simulated by various WRF configurations and ERA-40 vs observational

percentiles for the different regions. Gray line indicates a perfect description of the PDF.
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nonconvective, as well as an appropriate feedback be-

tween cumulus and microphysics, might explain why the

south and east extremes are particularly well repro-

duced. Regarding the PBL schemes, both the ACM2

and the YSU yield similar results, with minimal differ-

ences in favor of ACM2.

A clear enhancement in characterizing extremes has

already been revealed as one of the main advantages of

dynamical downscaling (Frei et al. 2003; Bell et al. 2004;

Giorgi 2006), and indeed a notable improvement is

achieved with WRF in terms of percentiles. This im-

provement might be exclusively associated with an in-

crease in the spatial resolution with respect to boundary

data. However, the dependence of WRF results upon

the different physics configurations suggests that, de-

spite the undeniable effect of resolution, physics must

also play an important role in reproducing precipitation

extreme events.

2) MONTHLY VALUES PRECIPITATION

Accumulated monthly precipitation was calculated

for every station and its nearest WRF grid point, and

then spatially averaged to obtain the monthly series for

each region. The correlation coefficient, relative RMSE,

and bias between WRF and the observational series are

shown in Fig. 4. The same procedure was adopted with

ERA-40 so that the improvement associated with WRF

could be evaluated.

All three parameters values—correlation, RMSE, and

bias—are within a satisfactory range, apart from the east

region. The correlation coefficients vary from 0.90 and

1.00, excluding the east region (0.65–0.76) and some

simulations that employed the Kain–Fritsch cumulus

scheme over the north and south regions. Relative

RMSE is acceptable for every region, except for the

east, where it reaches values as large as 92% of the

average monthly precipitation. In contrast, the best

combination for each of the other regions never exceeds

50% of the average monthly rainfall. The differences

in the monthly-mean precipitation displayed in terms

of the bias show a tendency to underestimate total

precipitation in the western regions [west (W) and cen-

tral (C)] and overestimate in the east (east and south

regions).

Concerning WRF performance with respect to its

boundary conditions, ERA-40 monthly correlations

with observations are higher than WRF correlations

(except the west region), whereas both the bias and the

RMSE are substantially worse. An evident improve-

ment is attained with WRF, reducing by about half the

error corresponding to ERA-40 in most of regions.

Again, different behavior can be observed in the east

region, where although the bias is clearly reduced in

absolute value and has opposite sign, RMSE is similar

for both model results and reanalysis. This feature, plus

the low correlation, indicates that WRF might not be

able to capture the timing as it would be desired, but it is

able to noticeably refine reanalysis estimations of total

precipitation over the east region.

The east region (Mediterranean coast) is widely

known for its singularity regarding precipitation, since

the marked convective nature of rain in semiarid cli-

mates complicates the accurate description of total

precipitation amount and location (Amengual et al.

2007). Not only WRF but also ERA-40 shows a pro-

nounced difference in correlation for the east region

compared with the other areas, and hence errors might

be partly inherited from the boundary conditions. An

additional cause for such spatial distribution of corre-

lation and bias is related to large-scale precipitation, and

it might be attributed to the smoothing of mountain

ridges and weakening of the associated ‘‘rain shadow’’

because of the selected resolution. Most of the fronts

that arrive in the Iberian Peninsula come from the

FIG. 4. (left to right) Correlation coefficient, relative RMSE, and bias calculated for WRF and ERA-40

monthly precipitation with respect to observations in the different regions.
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Atlantic Ocean and the mountains constitute an oro-

graphic barrier, creating a semiarid region to their east.

The model possibly lets too many fronts into the east

region, leading to a positive bias (Fig. 4).

The annual cycle with monthly means was also cal-

culated for the 10-yr study period to identify the WRF

performance in different seasons. WRF broadly cap-

tures the annual cycle (Fig. 5), including features not

represented by boundary conditions. For instance, the

local minimum in November is represented by WRF to

varying degrees. Andalusian precipitation is character-

ized by a summer minimum in August with basically no

rain events and a maximum during December and Jan-

uary, which are also well reproduced by WRF.

In contrast, spring rainfall seems to be systematically

exaggerated by WRF in the north and south regions,

whereas autumn precipitation is underestimated in most

of the regions. Precipitation in the eastern region is re-

markably overestimated, primarily in April, May, and,

to a lesser extent, September; the latter can be attributed

to an excess of soil moisture due to a positive deviation

in August precipitation that might enhance evaporation

and thus convective rainfall after summer. In fact, summer

deviations in precipitation only take place in the east

region. In contrast, spring errors cannot be univocally

attributed to a single source and different causes might

contribute to these deviations (i.e., a misrepresentation

of topography, an enhancement of land surface thermal

contrast, or a deficient simulation of Mediterranean

cyclogenesis that produces a large fraction of the east

coast precipitation). This is not a WRF-exclusive feature

but a common deficiency in RCMs over the Iberian

Peninsula (Herrera et al. 2010) that would require fur-

ther investigation.

Although the ERA-40 monthly correlation is high for

most of the regions, the annual cycle is too flat and WRF

actually provides a sharper depiction of it. This indicates

that WRF is introducing interesting details in terms of

monthly precipitation for climate studies. The combi-

nation using BMJ–ACM2 (BA3 and BAT) appears to

be the most accurate in reproducing the annual cycle,

especially in the central and west regions, where the

WRF estimates almost overlap the observational curve.

However, these configurations substantially overestimate

precipitation in certain months over the north and east

regions.

FIG. 5. Annual cycle of monthly precipitation for the different regions: observations (black), ERA-40 data (gray

dashed), and WRF simulations (colors).
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3) SPATIAL DISTRIBUTION OF PRECIPITATION

Besides WRF evaluation using regionalization, vali-

dation was also performed station by station. Figure 6

shows the spatial distribution of the correlation coefficient

of monthly precipitation, the mean annual difference of

rainfall, and the 95th percentile for the BA3 and BY3

configurations, as well as the ERA-40 data and the ob-

servations. By means of this analysis, orographic impacts

can be explored along with mesoscale dynamics and

FIG. 6. (left to right) Spatial distribution of monthly precipitation correlation coefficient, 95th daily precipitation percentile, and dif-

ference with respect to observed total annual precipitation calculated station by station for (a) BA3, (b) BY3, and (c) ERA-40. (d)

Observed 95th daily precipitation percentile and total annual rainfall.
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descriptions of local climate features. Rather than the

WRF capabilities at individual station, which might be

affected by the representation error, the aim of this

comparison was to depict the spatial patterns of the

model accuracy.

Correlations show an evident zonal gradient with

higher values in the western part (0.90–1.00) decreasing

to the east with values of 0.30–0.40 at certain stations.

Annual differences in precipitation give an idea of the

areas where rainfall is generally over- or underestimated,

and it is important to note that most of the stations in the

Guadalquivir River basin (the west and central regions)

present deviations lower than 10%. In addition, it can be

observed that precipitation is shifted eastward as a con-

sequence of unresolved topography. A negative differ-

ence is thus located in the western part because topography

was smoothed and precipitation not induced, while a

positive deviation was found in the easternmost areas,

where the highest mountains force the precipitation that

did not fall upwind.

The spatial distribution of the 95th percentile for daily

precipitation is clearly an improvement over ERA-40

(Fig. 6), which only resolves a broad gradient toward

lower values in the east. In fact, WRF is largely able to

capture topographic effects on extremes, particularly

over mountainous regions (Sierra de Grazalema and

Sierra Nevada, in the south), although their intensity is

slightly diminished. This feature strongly emphasizes

the convenience and benefit of using RCMs, primarily in

terms of precipitation extremes, which is one of the main

aspects to be surveyed in climate change studies.

b. Temperature results

Surface temperatures in WRF were compared at ev-

ery time step and maximum and minimum values were

stored on a daily basis. To refer grid-points and obser-

vations to common altitudes, the WRF outputs were

adjusted using a standard environmental lapse rate

(6.5 K km21) to account differences in elevation be-

tween the observations and the nearest grid-points.

Observations and WRF results were then compared

using the multistep methodology, described in section

3b, to group them into regions.

1) DAILY VALUES OF MAXIMUM AND MINIMUM

TEMPERATURES

All daily values from each region were considered to

calculate eight percentiles (1st, 5th, 10th, 25th, 75th,

90th, 95th, and 99th) for both Tmax and Tmin. Figures 7

and 8 show percentiles from different WRF runs versus

observational percentiles for Tmax and Tmin, respectively,

with the gray line representing a perfect description of

the PDF. Percentiles from ERA-40 temperatures are

shown too.

Minor differences were observed among the explored

configurations, since temperatures in RCMs mostly

FIG. 7. Daily maximum temperature percentiles simulated by various WRF configurations and ERA-40 vs observational

percentiles for the different temperature regions. Gray line indicates a perfect description of the PDF.
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depend on model elevation, radiation schemes, and SST.

Although these are minor differences, it is important

to analyze WRF performance in terms of temperature

as well.

Both Tmax and Tmin percentiles are accurately cap-

tured by WRF, with slightly better results for the latter.

Estimations of maximum temperature show a minor

underestimation, except for the CO region, where no

clear tendency was observed. In fact, in the CO region,

WRF tends to produce higher summer temperature

extremes (large percentiles) probably due to an in-

tensification of the land influence to the detriment of the

sea influence. The spread of WRF estimates in minimum

temperature is somewhat wider (lower percentiles in the

LL and upper percentiles in the HL); however, the dif-

ferences in percentiles are still not noteworthy.

In comparison with ERA-40, two important aspects

are improved when applying dynamical downscaling.

First, higher extremes of maximum temperatures are

much better reproduced in the LL region, where the

surface temperature extremes attain the highest values

in all of Europe. Second, minimum percentiles are cap-

tured more accurately in the HL region, which basically

represents locations at high altitudes and thus where the

absolute temperature minima are reached in Andalusia.

In contrast, maximum temperature percentiles in the

HL are well described by ERA-40, whereas WRF seems

to produce colder extremes. In the ML and CO regions,

only slight improvements are achieved with WRF.

2) MONTHLY VALUES OF MAXIMUM AND MINIMUM

TEMPERATURES

Mean values of daily Tmax and Tmin were calculated

for every station and its associated WRF grid point, and

then averaged over the regions to compare them. Figures 9

and 10 show the correlation coefficient, the RMSE, and

the MAE between WRF and observations’ monthly

means for both Tmax and Tmin. ERA-40 monthly

means are shown as well.

Although correlation coefficient values are almost

indistinguishable for WRF and ERA-40 estimates—

within the bounds of 0.98–0.99 for Tmax and 0.97–0.99 for

Tmin—both RMSE and MAE show sharp distinctions

even among the WRF simulations. In regions LL and

CO, the reduction of errors for WRF data is significant

with respect to ERA-40 for Tmax and likewise in regions

LL, H, and CO for Tmin. In fact, RMSE is improved

from about 48 to about 28C and a similar contribution

of WRF was observed for MAE in the LL region. In

the case of minimum temperature, it is the HL region

that is most sensitive to the model, decreasing RMSE

from about 38 to about 28C. In every region most WRF

results outperform ERA-40 in terms of monthly means

of Tmax and Tmin.

As for the performance of individual WRF config-

urations, the combination BMJ–YSU appears to be

the most appropriate to describe monthly-mean mini-

mum temperature, whereas BMJ–MYJ seems to better

FIG. 8. As in Fig. 7, but for daily Tmin.
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reproduce monthly-mean maximum temperature. It

should be noted that PBL parameterization plays a sig-

nificant role in describing surface variables, particularly

at night, and thus it is the scheme with the highest impact

on temperature, especially on the minimum values. In

fact, configurations that include the same PBL scheme

usually perform very similarly (KF–MYJ and BMJ–

MYJ) as can be seen in Fig. 10. Conversely, the choice of

microphysics has negligible repercussions on tempera-

ture estimations as has occurred for precipitation, and

indeed similar conclusions have been drawn in previous

studies over the Iberian Peninsula (Fernández et al. 2007).

The annual cycle was also calculated and it is dis-

played in Fig. 11. Its shape is precisely captured although

some deviations were found in certain seasons. Maxi-

mum temperature is, in general, underestimated, spe-

cifically during the summer, apart from the CO region.

For the rest of the regions, WRF compares much better

with observations, apart from March for LL, July for

ML, and January for CO. In contrast, there is no clear

propensity in the sign of the minimum temperature de-

viations, excluding CO, where every WRF configuration

presents a cold bias. Likewise, in compliance with how

similarly WRF configurations reproduce the annual cy-

cle, no conclusion can be drawn in relation to the most

suitable physics combination.

Considering the ERA-40 annual cycles for both tem-

peratures extremes, WRF contributes to improve the

temperature description in a few situations (Tmax in LL

and CO, and Tmin in HL and LL). Nevertheless, the

annual cycle is reproduced similarly by ERA-40 and

WRF in the other situations.

3) SPATIAL DISTRIBUTION OF MAXIMUM AND

MINIMUM TEMPERATURES

The correlation coefficient and the bias of monthly

values, together with the 95th percentile for Tmax and

5th for Tmin were calculated station by station for every

WRF simulation. To illustrate the spatial distribution of

these parameters in southern Spain, results from

FIG. 9. (left to right) Correlation coefficient, RMSE, and MAE calculated for WRF and ERA-40 monthly-mean Tmax

with respect to observations in the different temperature regions.

FIG. 10. As in Fig. 9, but for monthly-mean Tmin.
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simulations BA3 and BY3 are shown in Fig. 12 (Tmax)

and Fig. 13 (Tmin). The same parameters were also cal-

culated for ERA-40 to evidence the improvements from

dynamical downscaling. The observed extreme percen-

tiles, along with the mean throughout the entire period,

are shown too as a means to set a frame of reference.

The temperature correlation spatial patterns are not

as definite as for precipitation; however, Tmax interannual

variability is better captured in the Guadalquivir River

basin and higher values can be observed in this area. The

quantity Tmin presents lower correlation coefficient

values over the entire region, a feature that is related to

PBL parameterization and was also found by Zhang

et al. (2009) in the U.S. Pacific Northwest. At most sta-

tions, WRF Tmin is correlated over 0.95 with observa-

tions, although very few stations show values below that

threshold and are thus off the scale, particularly for BA3

and ERA-40. Nonetheless, excluding Marbella (0.75),

these stations still present high correlations exceeding

0.90.

Although both WRF configurations tend to capture

adequately the maxima over the river basin, some

deficiencies were noted. The regional model provides

values that are too low over the eastern mountains,

particularly the BA3 combination whose differences

versus observations are about 48C at many mountain

stations, whereas these differences range between 08 and

18C in the Guadalquivir River basin. The northeastern

mountains are also problematic with regard to Tmin ex-

tremes, with marked overestimations produced by both

WRF configurations. Nevertheless, WRF minimum

temperature percentiles show fair agreement with ob-

servations in general. In fact, at more than 70% of the

stations, 5th percentile WRF and observation differ-

ences are in the 228 to 28C range. The main distinction

between the WRF simulations was found in the river

basin, where BY3 produces warmer minima toward the

interior.

As would be expected from its coarse resolution,

ERA-40 scarcely captures the spatial pattern of ex-

tremes, while WRF clearly improves their distribution

and magnitude thanks to the finer resolution. Compared

to ERA-40, WRF better reproduces the maximum ex-

tremes in the lower elevations and minimum values over

the mountains, as well as milder Tmin at the coast and

lower Tmax at high altitudes.

In accordance with the results from the annual cycle,

Tmax is broadly underestimated over the entire region,

whereas no clear tendency was observed for Tmin. These

results are shown for both WRF configurations in Figs.

12 and 13 and they yield similar values in terms of

monthly temperatures. Only minor differences can be

noted in the case of Tmin, with BA3 being colder than

BY3. ERA-40 biases with respect to observations are

remarkable, particularly over the river basin for Tmax

and the west for Tmin.

FIG. 11. Annual cycle for Tmax and Tmin for the different temperature regions: observations (black), ERA-40 (gray

dashed), and WRF simulations (colors).
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5. Summary and conclusions

The WRF model has been shown to improve tem-

perature and precipitation predictions in terms of fre-

quency, spatial distribution, and intensity of extreme

events with respect to ERA-40 data over the complex

terrain region of Andalusia. Not only resolution but also

physics parameterizations have a significant impact on

results, as observed in the spread of the different con-

figuration estimates.

FIG. 12. (left to right) Spatial distribution of monthly-mean Tmax correlation coefficient, 95th daily Tmax percentile, and the bias with

respect to observations: (a) BA3, (b) BY3, and (c) ERA-40. Gray dots represent values below the scale bounds. (d) Observed 95th daily

Tmax percentile and mean Tmax.
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Most parameters explored were noticeably improved

by WRF, except for the monthly correlation that pre-

sented similar or lower values than ERA-40. However,

these imperfections are not crucial from a climatic per-

spective. Precipitation was particularly improved by

WRF in terms of biases and relative RMSE, whereas

minor differences were found for both Tmax and Tmin.

Spatial distributions were markedly enhanced by WRF,

providing value-added details of local heavy rainfall

events or temperature elevation dependence.

The question of which WRF configuration outper-

forms the others in every variable and in any situation

FIG. 13. As in Fig. 11, but for daily Tmin and using the 5th percentile.
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remains unanswered, since it strongly depends on the

region and the season considered. Although the com-

plete spectrum of physics options has not been exam-

ined, the analysis carried out sheds light on the

suitability of certain configurations. For instance, cu-

mulus and PBL schemes have been revealed as chief

components in the description of precipitation in south-

ern Spain, whereas the microphysics choice seemed to

be of minor importance. Overall, the combinations

BMJ–ACM2 and BMJ–YSU compared best with obser-

vations. The simplest microphysics scheme tested was

recommended (WSM3). Regarding temperature, almost

no differences could be appreciated among the varying

configurations, and only the PBL scheme affects Tmin

because it is directly related to the nocturnal boundary

layer simulation. The MYJ scheme provided slightly

better results. Temperature variations were rather

smooth in both time and space, as well as highly subject

to elevations. These two factors imply that the explored

physics parameterizations have less effect on tempera-

ture than on precipitation. Bearing in mind that major

differences in WRF estimates were found with respect

to rainfall, the configurations suggested for precipitation

prevail over those for temperature.

The main conclusion that can be drawn from this

study is that WRF accurately reproduces Andalusian

climate features at several time scales. Additionally, it

provides information at spatial scales not resolved by

GCMs that can be extremely useful in the elaboration of

high-resolution climate change scenarios. Further re-

search must be carried out to extend these conclusions to

climate reference periods.
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J. Montávez, and J. Navarro, 2008: Surface wind regionalization

in complex terrain. J. Appl. Meteor. Climatol., 47, 308–325.

Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright,

2006: Examination of convection-allowing configurations of

the WRF model for the prediction of severe convective

weather: The SPC/NSSL spring program 2004. Wea. Fore-

casting, 21, 167–181.

Kalkstein, L., G. Tan, and J. Skindlov, 1987: An evaluation of three

clustering procedures for use in synoptic climatological clas-

sification. J. Climate Appl. Meteor., 26, 717–730.
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