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AND F. A. WILLIAMS3

1Departamento de Ingenierı́a Térmica y de Fluidos, Universidad Carlos III de Madrid,
Leganés 28911, Spain
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The group vaporization of a monodisperse fuel-spray jet discharging into a hot
coflowing gaseous stream is investigated for steady flow by numerical and asymptotic
methods with a two-continua formulation used for the description of the gas and liquid
phases. The jet is assumed to be slender and laminar, as occurs when the Reynolds
number is moderately large, so that the boundary-layer form of the conservation
equations can be employed in the analysis. Two dimensionless parameters are found
to control the flow structure, namely the spray dilution parameter λ, defined as the
mass of liquid fuel per unit mass of gas in the spray stream, and the group vaporization
parameter ε, defined as the ratio of the characteristic time of spray evolution due to
droplet vaporization to the characteristic diffusion time across the jet. It is observed
that, for the small values of ε often encountered in applications, vaporization occurs
only in a thin layer separating the spray from the outer droplet-free stream. This
regime of sheath vaporization, which is controlled by heat conduction, is amenable
to a simplified asymptotic description, independent of ε, in which the location of
the vaporization layer is determined numerically as a free boundary in a parabolic
problem involving matching of the separate solutions in the external streams, with
appropriate jump conditions obtained from analysis of the quasi-steady vaporization
front. Separate consideration of dilute and dense sprays, corresponding, respectively,
to the asymptotic limits λ� 1 and λ� 1, enables simplified descriptions to be obtained
for the different flow variables, including explicit analytic expressions for the spray
penetration distance.
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1. Introduction
Because of its relevance in many industrial applications, the combustion and

vaporization of fuel sprays has been the subject of many previous investigations (see
e.g. Faeth 1983; Sirignano 1983, 1999; Williams 1985; Annamalai & Ryan 1992;
Crowe, Sommerfeld & Tsuji 1998 for reviews of the early work). Although the initial
studies focused on the response of isolated droplets, leading to expressions for the
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vaporization, relative motion and burning rate of individual droplets (Williams 1985),
it was early recognized that in many practical situations, fuel sprays evaporate or
burn as a group (Chiu & Liu 1977; Labowsky & Rosner 1978; Correa & Sichel
1982a , b). Different regimes of fuel-spray group combustion were identified, including
cases where the diffusion flame lies outside the droplet cloud; there, the fuel that
originates from the vaporizing droplets burns with the ambient oxygen, with droplet
vaporization occurring either all throughout the cloud (external group combustion)
or in a thin outer layer on the outer edge of the droplet cloud (external sheath
combustion). It was also seen that individual droplet combustion may also occur,
provided the spray is sufficiently dilute, with oxygen diffusing across the resulting
cloud of burning droplets, each one of them being surrounded by a closed flame if
their radius is large enough to sustain the flame. Besides these combustion modes,
for a narrow range of conditions, there exists a transition regime termed internal
group combustion (Chiu, Kim & Croke 1982), in which an internal diffusion flame
separates a group of vaporizing droplets from a group of individually burning
droplets, a configuration that has been observed in laboratory experiments (see e.g.
Chen & Gomez 1997; Russo & Gomez 2006). As mentioned in Chiu et al. (1982),
experimental evidence suggests that group combustion is the predominant form of
spray combustion in typical industrial burners.

Progress in understanding of spray vaporization and combustion relies on advanced
diagnostic techniques (Chen & Gomez 1997; Karpetis & Gomez 2000; Russo &
Gomez 2006) as well as on increased computer power, which enables, for instance,
analyses of droplet array combustion to be advanced well beyond the initial analytic
efforts (Labowsky 1980), an example being the recent computation of heptane-droplet
group combustion in a staggered configuration of Lee et al. (2010). With the present
computer power, direct numerical simulations of combustion of turbulent sprays at
moderate Reynolds numbers are feasible (Reveillon & Vervisch 2005; Luo et al. 2011),
and more complex computations including detailed chemistry and higher Reynolds
numbers can be envisioned in the near future. While numerical approaches can include
many phenomena, asymptotic and analytic methods, such as those employed here, are
better suited for isolating the most important effects, thereby increasing understanding
of the underlying physics significantly. In addition, they often can yield formulae that
are readily applied to calculate quantities of interest in applications.

Although in many combustors the fuel is introduced in the combustion chamber
as a high-velocity swirling liquid jet that breaks up to form a fuel-spray jet (Luo
et al. 2011), the jet configuration has been subject to a limited number of theoretical
investigations (Chiu et al. 1978; Kim & Chiu 1983). Instead, most of the initial
analyses considered vaporization (Correa & Sichel 1982a) or combustion (Chiu &
Liu 1977; Labowsky & Rosner 1978; Correa & Sichel 1982 b) of a spherical droplet
cloud, with the objective of gaining insight into the underlying competing physical
phenomena rather than evaluating a specific practical application.

The process of liquid jet atomization is highly complex, with the effects of injector
boundary layers, droplet breakup and collision, turbulence and recirculation playing
key roles in determining the characteristics of the resulting spray (Lasheras &
Hopfinger 2000). Since the liquid density is typically a factor up to 103 larger
than the gas density, appreciable liquid heating and vaporization resulting from heat
transfer from the gas carrier occurs only far from the injection region, once the spray
stream becomes sufficiently dilute for the liquid phase to occupy a small volumetric
fraction, of the order of 10−3. The processes of liquid-jet atomization leading to spray
formation and that of spray vaporization therefore occur in separate spatial regions,
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Figure 1. Vaporization of a monodisperse spray.

and can be consequently studied independently, with the latter being the subject of
the present investigation.

To focus more directly on the group vaporization process, a simple laminar
configuration including a central monodisperse fuel-spray jet discharging with a
high Reynolds number into a surrounding hot coflow, sketched in figure 1, is selected
for the study, the objective being that of developing new understanding, which is also
sought in recent experimental studies involving laminar sprays (Chen & Gomez 1997;
Karpetis & Gomez 2000; Russo & Gomez 2006). Clearly, given the simplicity of the
flow considered, the results cannot be expected to be directly applicable to realistic
configurations such as transient diesel sprays, supercritical conditions or complex
turbulent flows in gas turbines with potential acoustic amplification of pressure
oscillations, but can help in developing ideas for these applications. For instance, key
controlling parameters will be identified and their influence on the spray structure
will be described both numerically and analytically. Particular attention will be given
to the sheath-vaporization regime, previously analysed by Correa & Sichel (1982a)
for the spherical droplet cloud, with droplet vaporization occurring only in a thin
layer surrounding the spray, whose location will be found as a free boundary in a
parabolic problem that is solved by numerical integration in the distinguished regime
λ∼ O(1), with λ representing the mass of liquid fuel per unit mass of gas in the spray
stream, as defined below in (3.4).

The description of the spray dynamics is facilitated by the disparity of length scales
often encountered in realistic applications. Thus, in sprays with a large number of
droplets, the characteristic transverse spray size, given in our case by the injector
radius R, is much larger than the average distance between neighbouring droplets
ld = n

−1/3
j , with nj denoting the number of droplets per unit volume at the jet exit.

The other relevant distance involved in the analysis is the characteristic droplet size,
given by the value of the droplet radius at the jet exit aj , which is much smaller than
ld in dilute sprays. The inequalities

R � ld � aj (1.1)

are therefore expected to hold for dilute sprays with many droplets, found in most
spray applications.

Because of the condition aj � ld , each droplet vaporizes and moves with no direct
effects from neighbouring droplets. Thus, the main effects on the vaporization of the
droplets are not due to the direct influence of their neighbours, but are associated with
the mean gas-phase collective environment created by all the droplets. Each droplet
produces relatively large variations to the composition and temperature field that are
felt only in the immediate vicinity of the droplet, decaying at distances of the order of
aj , so that in the gas phase between droplets the variations in the different properties
are much smaller. The description of these slow variations of the different gas-phase
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variables, including the velocity, temperature, density and relevant mass fractions,
which occur over distances of the order of R, can be carried out at any spatial point
by space-averaging over a neighbourhood of that point of size L, with L in the range
R � L � ld . The vaporizing droplets appear as point sources of mass and momentum
and point sinks of heat when seen with the scale L, with the vaporization rate of and
the force acting on each individual droplet determined as those of the isolated droplet
surrounded by the mean local environment. Since L � ld , each computational cell
includes many droplets, and the corresponding point sources appear as distributed.

While a Eulerian description emerges naturally for the gas phase, the liquid phase
is in principle more easily described with a Lagrangian approach in which each droplet
is traced individually, with the ambient properties changing as the droplet moves
across the flow field. This Eulerian–Lagrangian approach is widely used in
computations of turbulent flows, an example being the particle-source-in-a-cell model
of typical turbulent combustion codes. An application of this combined Eulerian–
Lagrangian modelling strategy can be found for instance in the formulation recently
proposed by Bermúdez, Ferrı́n & Liñán (2007) for the description of group combustion
in pulverized coal furnaces.

An alternative formulation is possible, in which the liquid phase is also treated as
a continuum. In the resulting two-continua formulation (Sirignano 1999), the droplet
population is described in terms of the number of droplets per unit volume through
a conservation equation. Although this Eulerian–Eulerian approach is often simpler
and greatly facilitates analytical work, it is only well suited for the treatment of
monodisperse laminar sprays, as the one considered here, whereas in the presence
of crossing droplet trajectories, as occurs in turbulent flow or with recirculating flow
regions when the particle size is not small enough, this continuum description fails,
and tracking of individual droplets becomes necessary.

This paper is organized as follows. In the next section, the problem definition will
be given, followed in § 3 by a discussion of the relevant time scales and resulting
controlling parameters. The dimensionless formulation of the group-vaporization
problem is presented in §4, and sample numerical integrations are offered in § 5. The
subsequent sections are specifically devoted to the limit of sheath vaporization. The
formulation of the associated free-boundary problem is provided in § 6, with sample
numerical results shown in § 7. The treatments of the asymptotic limits of dense and
dilute sprays are presented in §§ 8 and 9, respectively. The final section is devoted to
concluding remarks.

2. Problem statement
The jet spray includes the interaction region between the round spray flowing out

of the injector and the hot coflowing stream at temperature T ′
c larger than that of

the injected jet, T ′
j . The velocity profiles in the jet and the coflow are assumed to

be uniform, with values given respectively by Uj and Uc. The spray is assumed to
be monodisperse, with the uniform values aj and nj of the droplet radius and the
droplet number density at the jet exit. Furthermore, the injector is assumed to be
sufficiently long for the mixture to be in saturated equilibrium at the jet exit. Thus,
the temperature T ′

j and initial fuel mass fraction Yj in the jet stream can be related
by the Clausius–Clapeyron equation

Yj =
WF

Wj

exp[Lv/(RF T ′
B) − Lv/(RF T ′

j )], (2.1)
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where T ′
B is the boiling temperature, Lv is the specific latent heat of vaporization,

RF = Ro/WF is the gas constant of the fuel, with Ro representing the universal
gas constant, and WF and Wj are the molecular weight of the fuel and the jet
carrier gas mixture, respectively. It is assumed that, as often occurs in applications,
Lv/(RF T ′

B) � 1, which implies that, at equilibrium, the departures of T ′
j from the

boiling temperature T ′
B are of order T ′

j − T ′
B ∼ [Lv/(RF T ′

B)]−1T ′
B � T ′

B , and can be
consequently neglected in the first approximation.

We assume in our analysis that the spray is dilute (in the sense that the volume
fraction of the liquid is small, even though we consider the liquid mass per unit
volume to be comparable with or larger than that of the gas) and that the spray
contains many droplets, so that the inequalities given in (1.1) are satisfied. For the
monodisperse laminar spray considered here, the liquid phase can be treated as a
continuum, as indicated above, a convenient approximation for the analytical work
attempted below. The variables describing the liquid phase are the droplet radius a′,
droplet number density n′ and droplet axial and radial velocity components u′

l and
v′

l , in this continuum description that applies in the limit R � ld , while the gas phase
is characterized by its density and temperature ρ ′ and T ′, velocity components u′ and
v′ and fuel mass fraction Y .

In the formulation, we shall further assume that the jet Reynolds number
Rej = ρjUjR/µ, where ρj is the gas density at the jet exit and µ is the viscosity
of the gas mixture, is large compared with unity for the flow to be slender, and yet
not so large to ensure that the motion remains laminar and steady. In that case, the
boundary-layer form of the axisymmetric conservation equations suffices to describe,
with relative errors of order Re−2

j , the resulting slender flow solution in terms of
the axial and radial coordinates x ′ and r ′. The description of the gas phase reduces
to the integration of the conservation equations for mass, momentum, species and
energy. These equations, supplemented with the near-isobaric form of the equation
of state, are to be integrated with initial conditions at x ′ = 0, corresponding to the
spray and coflow properties at the exit plane, and boundary conditions at r ′ =0 and
as r ′ → ∞ for x ′ > 0. Numerical integrations of the corresponding parabolic problem
for a selected number of cases were reported in Kim & Chiu (1983).

To close the formulation, appropriate expressions must be selected for the source
terms, which include the vaporization rate of each individual droplet ṁ and the force
(fx, fy) acting on each droplet, as a consequence of its motion relative to the local
surrounding gas. For simplicity, a low Reynolds number is assumed for the flow
around the droplets, which implies that values of the relative velocity u′

l − u′ and
v′

l − v′ are small compared with µ/(ρ ′a′). Under those conditions, Stokes law

(fx, fy) = 6πµa′(u′ − u′
l , v

′ − v′
l) (2.2)

can be used for the force acting on each droplet. On the other hand, with constant
conductivity k and specific heat at constant pressure cp assumed for the gas phase,
the droplet mass vaporization rate reduces to (Godsave 1953; Liñán 1985)

ṁ = 4πa′(k/cp) ln

(
1 +

cp(T ′ − T ′
B)

Lv

)
, (2.3)

which is a function of the local values of the gas temperature T ′ and droplet radius
a′. In writing (2.3), it has been taken into account that the droplets are initially in
saturated equilibrium, at a uniform temperature near the boiling value such that no
heat up is required prior to vaporization. Spalding numbers cp(T ′

c − T ′
B)/Lv of order
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unity are obtained for the characteristic values of the coflow temperature T ′
c selected

below, thereby giving typical values of the vaporization rate of order 4πajk/cp .

3. Characteristic time scales and controlling parameters
An order-of-magnitude analysis of the different competing physical phenomena

leads to useful estimates for the three characteristic times that are involved in the
spray vaporization process. Thus, comparing convection and transverse diffusion in
the gas-phase conservation equations leads to

td = R2/DTj
(3.1)

as an estimate for the diffusion time across the jet, with DTj
= k/(ρjcp) representing

the thermal diffusivity of the gas at the spray exit. This time is equal to the residence
time in the region of jet development, and typically differs from the droplet lifetime

ta =
ρla

2
j

3ρjDTj

, (3.2)

obtained by dividing the initial droplet mass (4π/3)a3
j ρl , where ρl denotes the liquid

fuel density, by the characteristic value of the vaporization rate 4πaj (k/cp), obtained
from (2.3) with a unity factor replacing the logarithmic term, as is appropriate when
the Spalding number is of order unity. Note that, except for an irrelevant factor
2/(3Pr), where Pr is the Prandtl number of the gas phase, the same estimate (3.2) is
obtained for the characteristic time of droplet acceleration, as can be seen by equating
the orders of magnitude of droplet acceleration ρl(4/3)πa3

j Uj/ta and the characteristic
value of the drag force 6πµajUj , obtained from (2.2).

The time scale given in (3.2) characterizes the vaporization of each individual
droplet. The collective effect of spray vaporization on the density, velocity, temperature
and fuel-vapour evolution in the jet is however measured by a different time scale, a
spray-interaction time,

ts =
1

4πajnjDTj

, (3.3)

obtained as the ratio of the characteristic jet density ρj to the volume rate of mass
production through vaporization 4πajnjk/cp (fuel mass per unit volume per unit
time), the latter being the product of the characteristic value of the vaporization
rate 4πajk/cp and the initial number of droplets per unit volume nj . The scale
given in (3.3) therefore corresponds to the characteristic time required for droplet
vaporization to change appreciably – i.e. by a relative amount of order unity – the
value of the gas density in the jet, as can also be obtained by comparing the convective
term with the droplet source term in the gas-phase continuity equation. Similarly, the
comparison of the convective and vaporization terms in the momentum, energy and
fuel conservation equations also yields (3.3) as the characteristic time required for
droplet vaporization to change significantly the values of the gas velocity, temperature
and fuel mass fraction in the jet, respectively.

The two primary parameters that control the spray solution are obtained as the
ratios of the above characteristic times. The first relevant parameter is the mass of
liquid fuel per unit mass of gas in the spray stream,

λ =
(4π/3)a3

j njρl

ρj

, (3.4)
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which is also equal to the characteristic time ratio λ= ta/ts . This parameter, measuring
the dilution of the spray, will be taken as an order unity magnitude in the
following development, as corresponds to spray configurations with characteristic
values of the average distance between neighbouring droplets ld = n

−1/3
j of order

ld ∼ (ρl/ρj )
1/3aj ∼ 10aj . Separate consideration will be given to the limiting cases λ� 1

and λ� 1, the latter being of interest in combustion applications, where small values
of λ of the order of the stoichiometric mixture fraction are often encountered. Note
that in the limit λ� 1 of relatively dense sprays, the condition ld � aj introduces an
upper limit λ� ρl/ρj , so that the spray remains sufficiently dilute for the formulation
to hold.

The second controlling parameter is the ratio of the characteristic time of jet
evolution due to spray vaporization ts to the diffusion time td:

ε =
ts

td
=

1

4πajnjR2
. (3.5)

In terms of the three characteristic scales involved in (1.1), this ratio can be seen to
be of order

ε ∼
(

ld

R

)2 (
ld

aj

)
. (3.6)

With ld/aj typically being a moderately large quantity of order (ρl/ρj )
1/3 � 10 for

λ∼ O(1), the resulting value of ε depends on ld/R. Small values of ε are expected
to appear in general in connection with the vaporization of sprays with multiple
droplets, that is, sufficiently small values of ld/R. On the other hand, in view of (3.6),
it is clear that values of ε of order unity or larger will be found only under conditions
of extreme dilution, not often encountered in applications. Therefore, because of its
expected wide range of applicability, the development of a deeper understanding of
the limit ε � 1 is clearly worthwhile.

The parameter ε was used previously as a small quantity for the asymptotic
analysis of droplet cloud vaporization (Correa & Sichel 1982a) and, as discussed
in Correa & Sichel (1982 b), controls the group combustion characteristics in reactive
configurations. Similar parameters were employed in other early theoretical studies
to characterize these processes. Thus, as noted by Sichel & Palaniswamy (1984), the
parameter ε is exactly equal to the inverse of the square of the Thiele modulus Ψ

employed by Labowsky & Rosner (1978). Also, under the condition of small droplet
Reynolds number used in deriving (2.3), ε becomes equal to the reciprocal of the group
combustion number G introduced by Chiu and co-workers (Chiu & Liu 1977; Chiu
et al. 1978) times the Lewis number. In many practical applications, the parameter ε

takes on small values, causing vaporization to occur in a sheath or vaporization front
that separates the spray, in saturated equilibrium, from the surrounding droplet-free
hot gas, with the flame standing outside the spray in combustion configurations. This
limit of sheath vaporization, analysed by Correa & Sichel (1982a) for a spherical
droplet cloud, will be investigated here for the axisymmetric vaporizing jet spray.

4. Dimensionless formulation
To non-dimensionalize the problem, the characteristic diffusion time td will be

used to construct scales for the streamwise length, Uj td , and for the gas and droplet
radial velocities, R/td = DTj

/R. Furthermore, the radial distance will be scaled with
R, whereas the droplet and gas axial velocity components, the droplet radius and
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number density, and the gas temperature and density will be scaled with their values
at the spray exit. With these scales, the complete set of dimensionless variables is
given by x = x ′/(Uj td), r = r ′/R, u = u′/Uj , ul = u′

l/Uj , v = v′/(R/td), vl = v′
l/(R/td),

a = a′/aj , n= n′/nj , T = T ′/T ′
j and ρ = ρ ′/ρj . The corresponding dimensionless form

of the gas-phase equations is

∂

∂x
(ρu) +

1

r

∂

∂r
(ρrv) =

na

ε
ln

[
1 +

(T − 1)

β

]
, (4.1)

∂

∂x

(
ρu2

)
+

1

r

∂

∂r
(ρrvu) − Pr

r

∂

∂r

(
r
∂u

∂r

)

=
naul

ε
ln

[
1 +

(T − 1)

β

]
+

3

2

Pr

ε
(ul − u)na, (4.2)

∂

∂x
(ρuT ) +

1

r

∂

∂r
(ρrvT ) − 1

r

∂

∂r

(
r
∂T

∂r

)
= −na

ε
(β − 1) ln

[
1 +

(T − 1)

β

]
, (4.3)

∂

∂x
(ρuY ) +

1

r

∂

∂r
(ρrvY ) − 1

Lr

∂

∂r

(
r
∂Y

∂r

)
=

na

ε
ln

[
1 +

(T − 1)

β

]
, (4.4)

while the equations for the liquid phase become

∂

∂x
(nul) +

1

r

∂

∂r
(nrvl) = 0, (4.5)

ul

∂a3

∂x
+ vl

∂a3

∂r
= − a

ελ
ln

[
1 +

(T − 1)

β

]
, (4.6)

ul

∂ul

∂x
+ vl

∂ul

∂r
=

3Pr

2ελ

u − ul

a2
, (4.7)

ul

∂vl

∂x
+ vl

∂vl

∂r
=

3Pr

2ελ

v − vl

a2
. (4.8)

The problem is subject to the initial and boundary conditions

x = 0 :

{
r < 1 : u = T = n = a = ul = 1, Y = Yj , vl = 0,

r > 1 : u = uc, T = Tc, Y = 0,
(4.9)

and

x > 0 :

{
r = 0 : v = ∂u/∂r = ∂T /∂r = ∂Y/∂r = 0,

r → ∞ : u = uc, T = Tc, Y = 0.
(4.10)

The above equations must be supplemented with the dimensionless form of the
equation of state. The description is simplified when changes in mean molecular
weight of the gas mixture are neglected, thereby reducing the equation of state to

ρT = 1. (4.11)

We shall adopt this simplifying approximation in the following description. Never-
theless, quantitative departures, arising from variations in mean molecular weight in
vaporization processes of typical liquid fuels, are worth investigating in the future.

Sources of mass, momentum and energy appear in the above equations associated
with the drag force acting on the droplets and their vaporization rate, as given
by (2.2) and (2.3). Linear combinations can be used to derive source-free equations.
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For instance, using (4.2) and (4.5)–(4.7) provides the spray momentum equation

∂

∂x

(
ρu2 + λna3u2

l

)
+

1

r

∂

∂r

(
ρrvu + λna3rvlul

)
− Pr

r

∂

∂r

(
r
∂u

∂r

)
= 0, (4.12)

which can be integrated radially across the jet with the boundary conditions indicated
above to provide the integral constraint,∫ ∞

0

r[ρu(u − uc) + λna3ul(ul − uc)]dr = (1 − uc)(λ + 1)/2, (4.13)

associated with the conservation of momentum flux. Source-free spray conservation
equations can also be derived for energy and fuel mass, leading to two additional
integral constraints that were used, together with (4.13), in monitoring the accuracy
of the numerical integrations of (4.1)–(4.11).

As can be seen, besides ε, λ and the Prandtl and Lewis numbers, Pr = µcp/k and
L = k/(ρjcpDTj

), respectively, there exist three additional dimensionless parameters in
the formulation, namely the dimensionless latent heat of vaporization β = Lv/(cpT ′

B)
and the coflow to spray temperature and velocity ratios Tc = T ′

c /T ′
B and uc = Uc/Uj .

The value β =0.36, corresponding to octane (Correa & Sichel 1982a), is employed for
the latent heat of vaporization in the computations below, which consider different
values of Tc − 1 and uc. The computations include, in particular, jets discharging into
a stagnant atmosphere (uc = 0) and also coflow velocities equal to the spray velocity
(uc = 1), the latter being particularly simple, in that the solution for the axial velocity
components reduces to u = ul = 1 everywhere in the flow field, thereby facilitating the
computations.

It is worth mentioning that the formulation given above could be easily modified
to be employed for the description of combustion of a fuel spray by a coflowing air
stream. If the chemical reaction between the fuel vapour and the oxygen of the air
is assumed to be infinitely fast, the description can be facilitated by incorporating
chemically passive scalars to describe the composition and temperature, including in
particular a mixture fraction Z following a conservation equation identical to (4.4). In
this limit of infinitely fast reaction, the flame lies where Z is equal to its stoichiometric
value Zs , which enters as an additional parameter. The temperature peaks at the flame,
which provides in this case the necessary heat source for group evaporation of the fuel
spray. Studies of fuel-spray group combustion based on modifications of the above
formulation are clearly worth pursuing.

5. Sample numerical results
The numerical scheme used to integrate (4.1)–(4.11) is second-order accurate, with

an implicit marching procedure considered for the gas-phase equations, account being
taken of the sources and sinks that appear in the conservation equations (4.1)–(4.4).
Since ρT = 1, the solution for the temperature field becomes independent of the
composition. The liquid phase is treated as a continuum, hence it can be discretized,
defining a finite number of droplets, the outermost droplet of which defines the
liquid-phase boundary, beyond which n= 0.

The governing equations for the gas phase, including the source terms, are integrated
with a second-order implicit finite-difference scheme, similar to that proposed by
Tanehill, Anderson & Pletcher (1984). The liquid-phase equations are written making
use of the Lagrangian description; thus, the system (4.6)–(4.8) of partial differential
equations is reduced to a system of ordinary differential equations, with an additional
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Figure 2. Profiles of temperature, droplet radius and fuel mass fraction across the vaporizing
jet as obtained by integration of (4.1)–(4.11) for uc = 0, L =1, Yj = 0.2, Pr = 0.7, β = 0.36,
Tc =2.15, λ= 1 and ε =1; the dashed line indicates the outer boundary of the spray.

differential equation which determines the radial position of each droplet as a function
of its corresponding radial velocity. The gas-phase properties at each droplet position,
needed to evaluate the source terms in (4.6)–(4.8), are obtained by linear interpolation.
Similarly, the source terms are distributed to the neighbouring gas-phase mesh points
by linear approximation. Therefore, the method used for the numerical integrations
is very similar to that proposed by Aggarwal, Fix, & Sirignano (1985) and Dukowicz
(1980). However, in order to avoid numerical errors resulting from the stiffness of the
source terms in (4.6)–(4.8) when ε � 1, the implicit trapezoidal rule is preferred and
was employed for the integration of the differential equations of the liquid phase.

The integration of the droplet-density equation (4.5) was carried out by the finite-
volume method with a cell-vertex scheme having dual control volumes (Blazek 2001).
The vertices of the mesh at a given axial position are defined by each droplet radial
position. Once the droplet axial velocity, radial velocity and corresponding radial
position are calculated, the fluxes at each cell face are determined, providing the
downstream evolution of the droplet density number.

Figures 2–6 correspond to numerical integrations of (4.1)–(4.11) for L =1, Pr = 0.7,
β = 0.36, Tc = 2.15, Yj = 0.2, uc = 0, and different values of λ and ε, including dilute
(λ= 0.1) and dense (λ= 20) sprays. Results obtained in the sheath-vaporization limit
ε =0, to be discussed later, are also provided in figures 3–6.

Figure 2 shows profiles of temperature, droplet radius and fuel mass fraction across
the jet spray at three different axial locations. As can be seen, for the case ε = 1
vaporization occurs in a distributed manner. In particular, although the vaporization
is more pronounced at the edge of the spray, non-negligible vaporization of the
droplets located along the axis can be noticed already at x = 0.4. As a result, the fuel
mass fraction increases from its initial value Yj =0.2, giving profiles that peak at the
axis. Also of interest is that heat transfer from the hot coflow increases the temperature
within the spray to values significantly larger than the boiling temperature T = 1.

Also shown in figure 2 is the outer boundary of the spray, which coincides initially
with the outermost droplet trajectory. The radius of this boundary droplet decreases,
however, downstream from the injector rim, as the droplet vaporizes in contact with
the high-temperature coflow. This droplet is completely consumed at a finite distance
from the injector x � 1.3, so that farther downstream the spray boundary is defined as
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Figure 3. (a,b) The vaporizing jet as obtained by integration of (4.1)–(4.11) for uc = 0, L = 1,
Yj = 0.2, Pr = 0.7, β = 0.36, Tc =2.15, λ= 1 and ε =0.01 (solid lines) along with results obtained
in the sheath-vaporization limit ε = 0 (dashed lines); the dot-dashed curves represent the radial
profiles of the rescaled mass vaporization rate na ln[1 + (T − 1)/β]/ε. The scales are indicated
for the profiles at the first axial location, with a different scale used for the mass vaporization
rate.

the location where a = 0, corresponding to vaporizing droplets located initially within
the jet away from the injector edge.

The plots in 3–5 show profiles of temperature, fuel mass fraction, gas axial velocity,
droplet radius and mass vaporization rate at two different axial locations. For all
three cases considered, corresponding to relatively small values of ε, the solution
shows a structure not present in figure 2. The distinct flow structure that emerges
includes a thin vaporization layer, where the vaporization rate is concentrated and the
fuel-vapour mass fraction reaches its peak value, separating an outer non-vaporizing
region with a = 0 from an inner equilibrium region, where the temperature, velocity
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Figure 4. (a,b) The vaporizing jet as obtained by integration of (4.1)–(4.11) for uc =0, L = 1,
Yj = 0.2, Pr = 0.7, β = 0.36, Tc =2.15, λ= 0.1 and ε = 0.01 (solid lines) along with results
obtained in the sheath-vaporization limit ε = 0 (dashed lines); the dot-dashed curves represent
the radial profiles of the rescaled mass vaporization rate na ln[1 + (T − 1)/β]/ε. The scales
are indicated for the profiles at the first axial location, with a different scale used for the mass
vaporization rate.

and droplet radius remain approximately equal to their injector values T = u = a =1.
This sheath-vaporization regime, identified by Correa & Sichel (1982a) when dealing
with the vaporization of a spherical fuel-droplet cloud, will be further considered in
the following section for the analysis of the jet structure.

Figures 3–5 also show the outer boundary of the spray, which increases with
λ, as may be seen from the different x scales in the figures. The evolution of
the corresponding spray shape for decreasing values of ε and two different coflow
velocities is shown in figure 6. The downstream distance for vaporization of the
boundary droplet leaving the injector rim is proportional to the initial jet velocity Uj
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Figure 5. (a,b) The vaporizing jet as obtained by integration of (4.1)–(4.11) for uc = 0, L = 1,
Yj = 0.2, Pr = 0.7, β = 0.36, Tc = 2.15, λ= 20 and ε = 10−3 (solid lines) along with results
obtained in the sheath-vaporization limit ε = 0 (dashed lines); the dot-dashed curves represent
the radial profiles of the rescaled mass vaporization rate na ln[1 + (T − 1)/β]/ε. The scales
are indicated for the profiles at the first axial location, with a different scale used for the mass
vaporization rate.

times the vaporization time of a single droplet ta . With the scales selected here, this
distance becomes proportional to ελ when expressed in dimensionless form, as can be
inferred from (4.6). Therefore, as ε decreases for a given value of λ, the corresponding
vaporization distance for the boundary droplet also decreases, a result seen in the
plots of figure 6.

The downstream position where the droplet located initially at the axis vaporizes
completely, which is the location where the boundary of the spray intersects the
axis, defines the spray penetration distance xv . This is seen in figures 3–6 to depend
on the spray dilution through the liquid-to-gas spray mass ratio λ. Dilute sprays
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Figure 6. (a,b) The boundary of the liquid phase where a = 0 obtained by integration
of (4.1)–(4.11) for L =1, Pr = 0.7, β = 0.36 and Tc = 2.15 for three different values of λ and
for ε = 10−1 (dash-dotted line), ε = 10−2 (dotted line) and ε =10−3 (dashed line). The solid line
represents the vaporization-layer location rv(x) obtained in the limit ε = 0.

corresponding to λ� 1 vaporize at a short distance from the exit plane, whereas
dense sprays with λ� 1 penetrate farther. The rough estimate

xv =
λ

2(Tc − 1)/β
(5.1)

for the dependence of xv on λ follows from equating the total heat provided by the
coflow per unit time, which can be estimated as the product of the characteristic radial
heat flux k(T ′

c − T ′
B)/R and the spray lateral surface 2πRx ′

v , to the amount of heat
needed per unit time to vaporize the droplets, obtained as the product of the liquid
mass flow rate πR2Ujnj (4/3)πa3

j ρl and the latent heat of vaporization Lv . As seen
below, for very long and very short sprays, corresponding to the two limiting cases
λ� 1 and λ� 1, the radial heat flux is modified, so that the analytical expressions
that are obtained for the penetration distance in the sheath-vaporization limit ε =0,
given later in (8.14) and (9.7), exhibit dependences on parameters that differ from
those displayed in (5.1).

6. The sheath-vaporization limit
The appearance of the sheath-vaporization regime for small values of ε, clearly

apparent in the numerical results shown in figures 3–5, can be anticipated by observing
that in the limit ε → 0 the solution of (4.1)–(4.4) – or that of (4.6) – leads to
a ln[1 + (T − 1)/β] = 0, indicating the existence of a thin vaporization front located
at r = rv(x) separating an outer region for r > rv where no droplets are found (a = 0),
and an inner region for r < rv where the temperature remains equal to the boiling
temperature in the first approximation (T = 1). Droplets vaporize only within the thin
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vaporization layer, of characteristic thickness ε1/2, which appears as a localized sink
of energy and source of mass, causing the profiles of T and Y to show a discontinuous
radial gradient at r = rv , with Y reaching its peak value Yv there. Since T − 1 ∼ ε1/2

in the vaporization layer, with both n and a remaining of order unity, the resulting
dimensionless mass vaporization rate na ln[1+(T −1)/β]/ε becomes of order ε−1/2, as
can be observed in the plots of figures 3–5. Because of the concentrated mass release,
the droplet and gas radial velocity components, vl and v, which are equal in the first
approximation as can be seen from (4.8) in the limit ε → 0, exhibit a jump across the
vaporization layer. The axial velocity components u and ul are also almost equal, as
follows from (4.7) with ε � 1. Vaporization does not result in a net axial momentum
exchange between the liquid and gas phases, so that the values of u and ul and those
of their radial gradients are equal on both sides of the vaporization front.

The leading-order asymptotic analysis in the limit ε → 0 leads to a free-boundary
problem in which rv(x) is to be determined as part of a nonlinear parabolic problem. In
the notation employed, the flow properties at the vaporization front will be denoted
by the subscript v, with the + and − signs used to refer to the outer and inner
sides when, as occurs for instance with the radial velocity and with the temperature
gradient, there is a leading-order change across the front caused by vaporization.

6.1. The outer non-vaporizing streams

As previously anticipated, for r > rv , the solution of (4.6) in the limit ε =0 yields
a =0, thereby reducing the solution for the gas phase to the integration of

∂

∂x
(ρu) +

1

r

∂

∂r
(ρrv) = 0, (6.1)

∂

∂x

(
ρu2

)
+

1

r

∂

∂r
(ρrvu) − Pr

r

∂

∂r

(
r
∂u

∂r

)
= 0, (6.2)

∂

∂x
(ρuT ) +

1

r

∂

∂r
(ρrvT ) − 1

r

∂

∂r

(
r
∂T

∂r

)
= 0, (6.3)

∂

∂x
(ρuY ) +

1

r

∂

∂r
(ρrvY ) − 1

Lr

∂

∂r

(
r
∂Y

∂r

)
= 0. (6.4)

For r < rv , on the other hand, T =1 and, therefore, ρ =1 according to (4.11), so
that (4.1) reduces to

∂u

∂x
+

1

r

∂

∂r
(rv) = 0. (6.5)

In the absence of vaporization, the radius of each droplet remains unperturbed, as can
be seen by inspection of (4.6), so that a = 1 for r < rv . Furthermore, observation of (4.7)
and (4.8) indicates that u−ul ∼ v−vl ∼ O(ε), so that in the first approximation one may
use ul = u and vl = v. When this condition is used along with (6.5) in (4.5), the equation
ul∂n/∂x+vl∂n/∂r = 0 is obtained, which yields n= 1 for r < rv upon integration along
the droplet trajectories. The small differences u − ul ∼ ε are sufficiently large for the
Stokes force to be non-negligible in (4.2) and (4.7). To avoid the presence of the
resulting singular term, the leading-order results T = 1, a =1, n= 1, ul = u and vl = v

are used in the spray momentum equation (4.12) to give the alternative equation

u
∂u

∂x
+ v

∂u

∂r
− Pr

1 + λ

1

r

∂

∂r

(
r
∂u

∂r

)
= 0, (6.6)
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for the computation of u = ul for r < rv . Finally, the fuel conservation equation reduces
with ρ = 1 to

∂

∂x
(uY ) +

1

r

∂

∂r
(rvY ) − 1

Lr

∂

∂r

(
r
∂Y

∂r

)
= 0, (6.7)

which completes the set of equations in the outer non-vaporizing streams.

6.2. The vaporization layer

The study of the self-similar inner structure of the vaporization layer provides a set
of boundary conditions at r = rv to be used in integrating (6.1)–(6.7). Across this
layer, of characteristic thickness ε1/2, the values of T , u and Y only change by a
small amount of order ε1/2 from their order-unity values T = 1, u = uv and Y =Yv ,
respectively, whereas v, a and n experience changes of order unity. The relative velocity
components u − ul ∼ ε and v − vl ∼ ε1/2 are sufficiently small for (4.7) and (4.8) to
be replaced at leading order by u = ul and v = vl . The solution can be determined by
rewriting (4.1)–(4.6) in terms of the rescaled radial coordinate ξ = (r − rv)/ε

1/2 and
the rescaled variables θ =(T − 1)/ε1/2, U = (u − uv)/ε

1/2 and φ =(Y − Yv)/ε
1/2. In the

formulation, the subscript ξ denotes differentiation with respect to this variable.
The development begins by integrating once −uv(drv/dx)nξ + (nv)ξ =0,

corresponding to the reduced form of (4.5), with boundary conditions n= 1 and
v = v− on the spray side (i.e. as ξ → −∞) to give

n

(
v − uv

drv

dx

)
= v− − uv

drv

dx
. (6.8)

Introduction of the rescaled variables into (4.1) and (4.6) gives

λ

(
uv

drv

dx
− v−

)
(a3)ξ = vξ =

naθ

β
, (6.9)

where (6.8) has been employed to express the factor multiplying (a3)ξ in a form
independent of ξ . Equation (6.9) can be used in (4.3) and (4.4) to give

θξξ

β
= − φξξ

L(1 − Yv)
=

naθ

β
, (6.10)

and in (4.2) to give

Uξξ = 0. (6.11)

First integrations of (6.9), (6.10) and (6.11) with boundary conditions as ξ → −∞ give

−λ

(
uv

drv

dx
− v−

)
(1 − a3) = v − v− =

θξ

β
= −φξ − (φξ )−

L(1 − Yv)
(6.12)

and Uξ = (Uξ )−. Evaluating these expressions as ξ → +∞ provides the jump conditions
across the vaporization layer

−λ

(
uv
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dx
− v−

)
= v+ − v− =

1

β

(
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∂r

)
+

= −

(
∂Y
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)
+

−
(

∂Y

∂r

)
−

L(1 − Yv)
(6.13)

and (
∂u

∂r

)
+

=

(
∂u

∂r

)
−

, (6.14)

which have been written in terms of the original spray variables.
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The jump conditions given above in (6.13) and (6.14) are needed for the integration
of the outer equations given in (6.1)–(6.7). No additional details are necessary at the
leading order considered here. Nevertheless, for completeness of the presentation, we
give below the detailed solution for n, a and θ across the vaporization layer.

The first equation in (6.12) can be employed together with (6.8) to write

n =
1

1 + λ(1 − a3)
, (6.15)

which can be evaluated with a = 0 to determine the value of the droplet number
density on the outer side of the vaporization layer, a function of the dilution given
by n+ = (1 + λ)−1. On the other hand, according to (6.10), the temperature variation
across the vaporization layer can be computed from

θξξ = naθ

{
θ(−∞) = 0,

θ(+∞) = q+ξ,
(6.16)

where the heat flux q+ = (∂T /∂r)+ is to be determined as part of the integration of
the outer problem. To facilitate the computation, the expression for the temperature
gradient θξ = q+(1 − a3), given in (6.12), can be used together with (6.15) to
rewrite (6.16) in the form

θ
dθ

da
= −3q2

+a(1 − a3)[1 + λ(1 − a3)], (6.17)

which leads to

θ/q+ =
√

6

[
3

10
− a2

2
+

a5

5
+ λ

(
9

40
− a2

2
− a8

8
+

2a5

5

)]1/2

(6.18)

upon integration with boundary condition θ =0 when a = 1. Evaluating (6.18) with
a =0 provides θ0 = 3q+[(4+3λ)/20]1/2 for the value of the temperature increase at the
inner-layer location ξ = ξ0 = 3[(4+3λ)/20]1/2, where a = 0. For ξ > ξ0, the temperature
is simply given by θ = q+ξ , as follows from integrating (6.16) with a = 0, whereas for
ξ < ξ0 the temperature is determined through (6.18) in terms of the droplet-radius
distribution,

ξ0 − ξ =

∫ a

0

3a[1 + λ(1 − a3)]

θ/q+

da, (6.19)

obtained from θξ = q+(1−a3), with the function (6.18) used to express the denominator
in the above integral as a function of a.

6.3. Mixing layer near the injector rim

Initial conditions for the integration of (6.1)–(6.7) follow from investigating the
near-injector region, an analysis presented below. For x in the range λε � x � 1,
the vaporization front has already developed, but remains embedded in the mixing
layer that separates the jet and the coflow, whose thickness increases downstream
from the injector rim proportional to the square root of the streamwise distance.
The analysis of this region employes the local coordinate η = (r − 1)/

√
x and the

mixture fraction ψ =
√

xF (η), defined such that the rescaled front location is given by
ηv = (rv − 1)/

√
x while the velocity components can be expressed in the form u = T Fη

and V =
√

xv = T (ηFη − F )/2, where the subscript η indicates differentiation with
respect to this similarity coordinate. Introducing these variables into (6.2) and (6.3)
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Figure 7. (a,b) Profiles of temperature, fuel mass fraction and axial velocity in the mixing
layer as obtained for β = 0.36, Tc =2.15, Pr = 0.7, L = 1, Yj = 0.2 and λ= 10−1 (solid line),
λ=1 (dash-dotted line) and λ= 10 (dashed line); with uc =1 the solution for the axial velocity
reduces to u =1 and is not shown in the figure.

gives

(T Fη)ηη +
1

2Pr
F (T Fη)η = 0, (6.20)

Tηη +
1

2
FTη = 0, (6.21)

whereas (6.6) yields

Fηηη +
1 + λ

2Pr
FFηη = 0, (6.22)

and the fuel mass fraction satisfies

Yηη +
1

2L
FYη = 0. (6.23)

The solution involves integration of (6.20), (6.21) and (6.23) for η >ηv with boundary
conditions Fη − uc/Tc = T − Tc =Y = 0 as η → ∞ and T − 1 =Fη − uv = Y − Yv = 0 at
η = ηv , and of (6.22) and (6.23) for η < ηv with boundary conditions F −η = Y −Yj = 0
as η → −∞ and Fη − uv = Y − Yv = 0 at η = ηv . The additional conditions

−λ

2
F− =

1

2
(F− − F+) =

1

β
(Tη)+ =

(Yη)− − (Yη)+
L(1 − Yv)

, (6.24)

(TηFη + Fηη)+ − (Fηη)− = 0, (6.25)

at η = ηv , corresponding respectively to (6.13) and (6.14), serve to close the problem.
For given values of β , λ, Tc and Yj , the integration provides the temperature, velocity
and fuel mass fraction across the mixing layer, including the vaporization-layer
values uv , Yv and ηv . Sample profiles are shown in figure 7 for uc = 0 and uc = 1. The
dependence of ηv with λ for different values of Tc and uc is shown in figure 8. As can
be seen, the location of the vaporization layer depends on the value of λ. The two
limiting cases of very dense and very dilute sprays are addressed below.
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Figure 8. (a,b) The variation of ηv as a function of λ for β =0.36, Pr = 0.7, and different
values of Tc and uc . The dashed lines represent the asymptotic behaviours for λ� 1 and

λ� 1.

7. Sheath-vaporization results
The solution for the jet in the sheath-vaporization regime can be determined

by integration of (6.1)–(6.4) with boundary conditions u − uc = T − Tc = Y =0 as
r → ∞ and u − uv = T − 1 =Y − Yv = 0 as r → rv and of (6.5)–(6.7) with boundary
conditions v = ∂u/∂r = ∂Y/∂r =0 at r = 0 and u − uv =Y − Yv = 0 as r → rv . Initial
conditions correspond to the self-similar solutions identified above at x � 1. The
two problems are coupled through the additional constraints (6.13) and (6.14). The
solution determines in particular the boundary values uv(x), Yv(x), v+(x) and v−(x)
along with the evolution of the vaporization front rv(x) from its initial location
rv(0) = 1.

Figures 3–5 show by dashed curves the profiles of temperature, axial velocity,
droplet radius and fuel mass fraction determined in the sheath-vaporization limit. As
can be seen, the agreement with the results of numerical integrations of the original
spray equations for small values of ε is excellent. The location of the vaporization
front rv(x) is also shown in these figures, and also in figure 6, where it can be clearly
seen that the spray boundary computed for decreasing values of ε approaches the
vaporization front of the sheath-vaporization limit, with departures appearing at
small distances x ∼ ελ, in the initial region where the vaporization front is forming.

Of particular interest in applications is the downstream distance of spray
penetration x ′

v before complete vaporization is achieved. In the sheath-vaporization
limit, this penetration distance corresponds to the downstream location xv at which
the vaporization front rv(x) reaches the axis, i.e. rv(xv) = 0. The variation of this
distance with λ is compared in figure 9 with results of numerical integrations of the
original problem (4.1)–(4.11) for three values of ε and two different coflow velocities.
As expected, the sheath-vaporization limit correctly predicts the penetration distance
of sprays with ε � 1, with relative errors being typically small (e.g. of the order of
20 % for λ∼ O(1) and ε = 0.1). Values of xv obtained with the sheath-vaporization
reduced problem for different coflow conditions are shown in figure 10, where the
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Figure 9. (a,b) The spray penetration distance obtained with Tc =2.15, β = 0.36 and Pr = 0.7
by integration of (4.1)–(4.11) for ε = 10−1 (dash-dotted line), ε = 10−2 (dotted line) and ε = 10−3

(dashed line) compared with the vaporization distance obtained in the limit ε → 0 (solid line).
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Figure 10. (a, b) The spray penetration distance xv obtained in the limit ε → 0 with β = 0.36
and Pr = 0.7 for two different values of Tc and uc . The asymptotic leading-order predictions
given for λ� 1 in (9.7) and for λ� 1 in (8.14) are also plotted as dashed curves, with the
characteristic distance δ in the latter being computed from (8.7) for uc =1 and from (8.15) for
uc = 0.

dashed lines represent the asymptotic predictions to be obtained below for dense and
dilute sprays. As expected, vaporization is enhanced for larger values of the coflow
temperature, so that the value of xv decreases for increasing values of Tc for both
uc = 0 and uc =1.
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8. The limit λ� 1

For sufficiently dense sprays with λ� 1, the vaporization front moves slowly, causing
the resulting penetration distance to become much larger than the characteristic
distance of jet development. The mixing layer between the emerging jet and the
surrounding gas will be considered first, after which the subsequent development of
the jet will be addressed.

8.1. Mixing-layer solution

Initially, the front is embedded in the mixing layer that departs from the injector rim,
investigated above in § 6.3. In this limiting case, the solution of (6.22) for η <ηv is in
the first approximation F = η, except in a thin layer η ∼ O(λ−1/2) that need not be
solved to obtain the solution for η >ηv , which is found by integrating (6.20) and (6.21)
with boundary conditions Fη − uc/Tc = T − Tc =0 at η → ∞ and F/2 = −Tη/β and
T − 1 = Fη − 1 = 0 at η = 0. The resulting value of F (0) = F+ can be used in the first
equation of (6.24) to obtain the vaporization-layer location according to

ηv = λ−1F+, (8.1)

where the constant F+ takes for β = 0.36 and Tc = (1.5, 2.15, 3.0) the values
F+ = (−0.6572, −1.0084, −1.2455) and F+ = (−0.8228, −1.2062, −1.4408) for uc =0
and uc = 1, respectively. On the other hand, the second derivative Fηη(0) = (Fηη)+
can be used in (6.25) to obtain (Fηη)− =(Fηη)+ − βF+/2, which in turn determines
from (6.22) the small departures

F − η = (
√

π/2)(Fηη)−λ
−1i1erfc[−λ1/2η/(2

√
Pr)] (8.2)

of the streamfunction for η <ηv , where i1erfc is the first integral of the error function.
The prediction for the initial front location given in (8.1) is found to be very accurate,
as can be seen in the comparisons of figure 8.

8.2. Leading-order analysis

The vaporization front continues to move slowly as the jet develops, with most of the
spray vaporization occurring for x ∼ δ � 1, where δ(λ) is to be determined as part of
the asymptotic analysis for λ� 1. The terms involving axial derivatives in (6.1)–(6.7)
are of order δ−1, as is apparent when the rescaled coordinate X = x/δ is introduced.
If the corresponding term is neglected in (6.5), integration with boundary condition
v =0 at r =0 yields v = 0 for 0 <r < rv , which can be used in integrating (6.6) and
(6.7), also with axial convection neglected, to give the uniform profiles u = uv and
Y = Yv for r < rv . Note that, across the spray, the departures of v and Y − Yv from
their leading-order values v = 0 and Y = Yv can be expected to be of order δ−1, which
is the relative error associated with the axial derivative that has been neglected in
integrating (6.5) and (6.7). However, because of the small factor 1/(1+λ) affecting the
viscous force in (6.6), axial velocity variations u − uv in this region are much larger,
of order λ/δ, leading to a radial velocity gradient at the vaporization front given by

Pr

(
∂u

∂r

)
−

=
λ

δ

1

2
rvuvu̇v, (8.3)

as can be seen by integrating once (6.6) for u − uv � 1. Here, the dot will be used
to denote differentiation with respect to the rescaled axial coordinate X, so that, for
instance, u̇v = duv/dX in the above equation.

The quasi-steady profiles obtained for r > rv by neglecting axial convection in (6.1)–
(6.4) provide the solution at distances r − rv ∼ O(1) with small errors of order δ−1.
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Integration of (6.1) gives ρrv = −(λ/δ)uvrvṙv , with the first equation in (6.13) with
v− = 0 employed to evaluate the constant value of the radial mass flux. Using this
result in integrating (6.3) with boundary conditions T =1 and (∂T /∂r)+ = −β(λ/δ)uvṙv

at r = rv yields

T = β(r/rv)
−(λ/δ)uvrv ṙv − β + 1, (8.4)

whereas, at the same level of approximation, integration of (6.2) and (6.4) gives

λ

δ
uvṙv(u − uv) = −Pr

(
∂u

∂r

)
+

[(
1 +

T − 1

β

)1/P r

− 1

]
(8.5)

and

Y = 1 − (1 − Yv)

(
1 +

T − 1

β

)L

, (8.6)

when the boundary conditions u = uv and ∂u/∂r = (∂u/∂r)+ and Y =Yv and
∂Y/∂r = (λ/δ)ucL(1 − Yv)ṙv are employed, the latter determined from (6.13) with
(∂Y/∂r)− =0.

The equations that determine rv(X), uv(X) and Yv(X) are obtained by matching
the quasi-steady profiles (8.4), (8.5) and (8.6) with those found in the far-field region,
where the effect of axial convection can no longer be neglected in (6.1)–(6.4). For
non-zero values of uc, this region corresponds to radial distances of order r ∼

√
δ, as

follows from a simple convection–diffusion balance in (6.2)–(6.4). Therefore, matching
at leading order requires that T − Tc, u − uc and Y all be small at radial distances of
order r ∼

√
δ. When this condition is used in (8.4), the scaling law

λ ln(δ)/δ = 1 (8.7)

follows, along with the leading-order result

uvrvṙv = −2 lnΛ, (8.8)

where

Λ = 1 +
Tc − 1

β
. (8.9)

At the same level of approximation, (8.5) and (8.6) lead to

2(uv − uc)ṙv = (Λ1/P r − 1)rvu̇v (8.10)

and

Yv = 1 − Λ−L, (8.11)

with (8.3) used to evaluate (∂u/∂r)+ = (∂u/∂r)− in deriving (8.10) from (8.5).
Straightforward integration of (8.10) with rv =1 when uv = 1 gives

uv = uc + (1 − uc)(r
2
v )

1/(Λ1/P r −1), (8.12)

which can be substituted into (8.8) to provide an evolution equation for rv(X), finally
yielding

4X ln Λ = uc(1 − r2
v ) + (1 − Λ−1/P r )(1 − uc)[1 − (r2

v )
1/(1−Λ−1/P r )] (8.13)

upon integration with initial condition rv = 1 at X = 0. The rescaled penetration
distance Xv = [1 + (uc − 1)Λ−1/P r ]/(4 ln Λ) follows from setting rv = 0 in the above
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equation. At leading order, the asymptotic analysis therefore gives

xv =
δ{1 + (uc − 1)Λ−1/P r}

4 lnΛ
, (8.14)

as a prediction for the penetration distance when uc 
= 0, with Λ given in (8.9) in
terms of Tc and β and δ � λ ln λ determined from (8.7) for a given value of λ� 1.
This prediction is compared in figure 10 with the results of numerical computations
of the sheath-vaporization problem for uc = 1, yielding excellent agreement over the
range of λ computed.

The length scale δ defined in (8.7) is modified when uc =0, because convection in
this case enters farther from the spray, in a region whose characteristic radius can be
obtained from the convection–diffusion balance r2/ ln r ∼ δ, obtained from (6.2)–(6.4)
with u ∼ T − Tc ∼ Y ∼ 1/ ln r , a scaling that follows from the asymptotic decay of
the quasi-steady profiles (8.4)–(8.6). As a result, at the order computed above, the
equation that determines δ becomes

λ ln[δ ln(δ)]/δ = 1, (8.15)

which should be used instead of (8.7) when uc = 0. It is easy to see that the rest
of the development leading to (8.14) remains identical, so that the leading-order
asymptotic prediction for the penetration distance of dense spray jets discharging
into a stagnant hot atmosphere is given by (8.14), with uc = 0 and with δ computed
from (8.15), equivalent to δ = λ ln(λ ln λ) at this order. This prediction is compared
in figure 10(a) with results of numerical integrations. As can be seen, the resulting
accuracy is reasonably good, with departures remaining smaller than 20 % for the
two values of Tc considered, in agreement with the errors of order (ln δ)−1 associated
with the leading-order asymptotic development. It is worth pointing out that these
differences in radial scale between the cases uc ∼ O(1) and uc = 0 were also previously
encountered in classical boundary-layer analyses in cylindrical geometries, with the
scale for the case uc ∼ O(1) corresponding to that found by Glauert & Lighthill (1955)
for the boundary layer developing over a stagnant cylinder and that of the case uc =0
being related to that used by Crane (1972) in his analysis of a cylinder moving in a
fluid at rest.

8.3. Higher-order corrections

The leading-order predictions for Yv , uv and rv given in (8.11), (8.12) and (8.13) and
the accompanying prediction for xv given in (8.14) can be improved by introducing
expansions for the different variables in increasing powers of (ln δ)−1. The analysis may
employ the results Y = Yv and v = 0 for r < rv along with the quasi-steady profiles
given in (8.4), (8.5) and (8.6) for 0<r − rv ∼ O(1), because the associated errors
are of order δ−1 � (ln δ)−1. Matching with the far-field solution beyond the order
used in deriving (8.11)–(8.13) must be however considered, along with higher-order
corrections to (∂u/∂r)− arising from convective effects for r < rv , with the leading-
order result (8.3) being replaced by a more elaborate expression involving powers of
(ln δ)−1. As an example, results are given below for the case uc = 1, for which the
required development is simpler, because the solution for the velocity field everywhere
reduces to u =1, so that corrections to rf stem only from higher-order matching of
the temperature field with the solution for r ∼ δ1/2.

The analysis begins by writing the quasi-steady profile (8.4) for r ∼ δ1/2 in the form

lnΛ + ln

(
1 +

T − Tc

βΛ

)
= −1

2
rvṙv

[
1 +

2

ln δ
ln

(
r

δ1/2rv

)]
. (8.16)
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The vaporization front rv is determined as an expansion of the form r2
v = A0 +

(ln δ)−1A1 + (ln δ)−2A2 + · · · by matching the temperature profile given above with
that encountered in the far field, yielding at leading order Ȧ0 = −4 lnΛ, which can be
integrated with initial condition A0(0) = 1 to give

A0 = 1 − 4X lnΛ, (8.17)

corresponding to the leading-order result (8.13) with uc =1.
Investigation of the solution in the far field is required to obtain the first-order

correction A1. Observation of (8.16) reveals that T − Tc ∼ (ln δ)−1 for r ∼ δ1/2, which
justifies the selection of the rescaled temperature

θ =
(ln δ)(T − Tc)

2βΛ lnΛ
(8.18)

for the analysis of the far field in terms of the rescaled radius R = r/(Tcδ)
1/2, with the

term T 1/2
c included in the definition for convenience. The governing equation for the

leading-order term in the expansion θ = θ0 + (ln δ)−1θ1 + · · · can be seen from (6.3) to
be

∂θ0

∂X
− 1

R

∂

∂R

(
R

∂θ0

∂R

)
= 0, (8.19)

which must be integrated with initial conditions θ0 = 0 at X = 0 and with boundary
conditions θ0 = 0 as R → ∞ and R∂θ0/∂R =1 as R → 0, the latter following from
matching with (8.16). The solution reduces to θ0 = − 1

2
E1[R

2/(2X)], where E1 is the
exponential integral (Abramowitz & Stegun 1965), with the simplified form

θ0 = lnR + 1
2
[γ − ln(2X)] (8.20)

applying as R → 0, where γ is Euler’s constant. Matching (8.20) with (8.16) gives
Ȧ1/Ȧ0 = γ − ln(2XTc/A0), which can be integrated with initial condition A1(0) = 0 to
provide the first-order correction:

A1 = (A0 − 1)[γ − ln(2Tc) − lnX] + A0 ln A0. (8.21)

Solving now r2
f = A0 +(ln δ)−1A1 = 0 for the first two terms in the penetration-distance

expansion Xv = Xv0 + (ln δ)−1Xv1 + · · · yields Xv0 = 1/(4 ln Λ) and

Xv1 = −Xv0[γ − ln(2Tc) − ln Xv0], (8.22)

with the former corresponding to the leading-order result (8.14) with uc = 1. The
expansion for Xv can be used to write

xv =
δ

4 lnΛ
{1 − [γ − ln(Tc/2) + ln(ln Λ)]/ ln(δ)}, (8.23)

as a corrected prediction for xv when uc = 1. Results obtained with this expression
are essentially the same as those shown in figure 10 for the leading-order predictions
coming from (8.14) until λ� 30 but agree slightly better with the exact solution at
smaller values of λ. The accuracy of the corrected prediction is therefore comparable
with that found at leading order, with differences between both expressions being
small, because the factor γ −ln(Tc/2)+ln(ln Λ) appearing in the logarithmic correction
is not very large for the values of Tc and β investigated. Improved accuracy must rely
on corrections of order (ln δ)−2 and smaller, which could be computed by carrying
on the present analysis to higher orders, a development not further pursued here and
not strongly motivated, in that logarithms of large numbers are not often very large.
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Figure 11. (a,b) The spray penetration distance xv obtained in the limit ε → 0 with β = 0.36,
Pr = 0.7 and λ= 100 for Tc = (2.15, 4.00) and increasing values of uc . The dashed and
dot-dashed curves represent the leading-order prediction xv = [δ/(4 lnΛ)][1 + (uc − 1)Λ−1/P r ]
and the corrected value xv = [δ/(4 lnΛ)][1+(uc−1)Λ−1/P r−ln(uc)/ ln(δ)] with δ and Λ evaluated
from (8.7) and (8.9), while the solid dot denotes the prediction xv =[δ/(4 ln Λ)][1 − Λ−1/P r ] for
uc = 0, with δ evaluated from (8.15).

8.4. Influence of the coflow velocity

As can be inferred from the comparisons in figure 10, the leading-order analysis
describes satisfactorily the reduction in penetration distance associated with increasing
values of Tc; as expected, increasing the coflow temperature produces a larger heat
flux and therefore reduces the penetration distance, an effect clearly seen in the plots.
The dependence of xv on uc is somewhat more complicated and deserves further
attention.

The leading-order result for uc 
= 0 given in (8.14) predicts a linear increase of
xv with uc. The increasing rate is however not very large for the small value of
the latent heat of vaporization β = 0.36 used here, because the accompanying factor
Λ−1/P r is relatively small. This linear increase, due to spray acceleration, competes
with a more subtle effect, coming from modifications to the radial heat flux, not
accounted for in the leading-order prediction (8.14). As previously mentioned, in the
limit of vanishing coflow velocities, the characteristic radius of the far-field region
increases, which in turn reduces the radial heat flux reaching the spray, causing the
characteristic spray length δ to increase from the value determined for uc 
= 0 in (8.7)
to the value given by (8.15). Since this additional effect is not accounted for in the
leading-order analysis for uc 
= 0, as uc is decreased the value of xv obtained from (8.7)
and (8.14) approaches a limiting value below the asymptotic prediction for uc = 0,
determined with use made of (8.15). This is seen in figure 11, which compares results
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of integrations of the sheath-vaporization problem for λ= 100 and different values of
uc with the asymptotic predictions for uc =0 and uc 
= 0.

As can be seen in the figure, the numerical integrations of the sheath-vaporization
problem exhibit the increase of xv for decreasing uc discussed above, contrary to
the prediction obtained by use of (8.7) in (8.14), which agrees with the numerical
results only at values of uc appreciably larger than those of the figure. This effect
can be captured in the asymptotic solution for uc ∼ O(1) by incorporating corrections
to (8.14), of order (ln δ)−1. Although the required analysis is not attempted here, it
is relatively easy to extract the dependence on uc of the resulting correction term
by studying the asymptotic development given in § 8.3 for the special case uc =1.
As can be anticipated, in the modified analysis for uc 
= 1, the far-field temperature
solution should incorporate the value of uc in the definition of the radial coordinate
R = r/(Tcδ/uc)

1/2. With this definition, the far-field equation for the temperature would
reduce to (8.19) and matching the resulting solution with the inner quasi-steady
temperature field would produce a term − ln(2Tc/uc) as a replacement for − ln(2Tc)
in (8.21) and also in (8.22). The associated correction ln(uc)/ ln(δ) can be incorporated
when writing (8.14) to give xv = [δ/(4 ln Λ)][1 + (uc − 1)Λ−1/P r − ln(uc)/ ln(δ)], with
δ and Λ evaluated from (8.7) and (8.9) respectively. The comparisons shown in
figure 11 indicate that this corrected expression improves significantly the accuracy
of the asymptotic limit λ� 1 over the range of uc shown in the figure, with the
logarithmic correction providing the increase in xv found numerically as uc → 0.
Additional analysis of the distinguished limit uc ∼ 1/ ln δ could provide the transition
between the asymptotic analyses for uc ∼ O(1) and the limiting result for uc =0 in
dense sprays.

9. The limit λ� 1

For sufficiently dilute sprays with λ� 1, the amount of heat required to vaporize
the spray and the resulting mass addition to the gas stream are both small, so
that the solution for the gas temperature and fuel mass fraction is only weakly
affected by the vaporization process. The heat flux coming from the coflow easily
vaporizes the spray, yielding in the sheath-vaporization regime a vaporization front
that propagates rapidly into the spray jet to complete vaporization at a short distance
xv � 1. Initially, the vaporization front lies on the innermost side of the annular
mixing layer that forms downstream from the injector rim, at a location −ηv � 1.
On the outer side corresponding to η >ηv , the solution is determined in the first
approximation by integration of (6.20), (6.21) and (6.23) with boundary conditions
Fη − uc/Tc = T − Tc = Y = 0 as η → ∞ and F − η = T − 1 = Y − Yj = 0 as η → −∞,
giving a temperature profile that decays towards the spray side according to

T − 1 = −C exp(−η2/4)/η, (9.1)

where the constant C is obtained as part of the integration, giving
for Tc = (1.5, 2.15, 3.0) the values C =(0.1404, 0.2764, 0.4082) for uc = 0 and
C = (0.1948, 0.3624, 0.5275) for uc =1, respectively. This vaporization-free solution
fails as the vaporization front is approached for η − ηv ∼ − η−1

v � 1 where T − 1 � 1
and F − ηv � 1. Introducing the stretched coordinate ζ = −ηv(η − ηv)/2 reduces the
description of the temperature to the integration of Tζζ − Tζ = 0 with boundary
conditions T − 1 = Tζ − βλ= 0 at ζ = 0 and T − 1 → −C[exp(−η2

v/4)/ηv]e
ζ at ζ → ∞.

Integrating once with the boundary conditions at ζ = 0 yields Tζ − T = βλ − 1, and a
second integration provides T − 1 = −βλ − C[exp(−η2

v/4)/ηv]e
ζ . The condition T = 1
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at ζ = 0 then gives

βλ = −C exp(−η2
v/4)/ηv, (9.2)

to determine ηv as a function of β and λ. The accuracy of this asymptotic prediction
is very satisfactory, as can be seen in figure 8.

As the vaporization front moves into the jet outside the annular mixing layer,
effects of curvature enter to modify the heat flux that reaches the vaporization front
from outside. In the intermediate region that lies between the mixing layer and the
vaporization front, corresponding to radial distances such that

√
x � 1 − r < 1 − rv ,

the temperature and velocity differ by exponentially small amounts from the initial
jet values T = 1 and u =1, whereas the radial velocity is given simply by v = ∂T /∂r ,
as can be seen by integrating (6.3) with u = 1 and with λ= 0 used in (6.13) when
evaluating the boundary values v+ and (∂T /∂r)+. Introducing this result into (6.1)
provides the linear heat equation

∂T

∂x
− 1

r

∂

∂r

(
r
∂T

∂r

)
= 0, (9.3)

which is to be integrated with the boundary condition T = 1 at r = rv and subject as
r → 1 to the matching condition with the mixing-layer solution given in (9.1). In the
first approximation, the solution is given by

T − 1 = C
√

x

(
exp[−(r − 1)2/(4x)]

r1/2(1 − r)
− exp[−(rv − 1)2/(4x)]

r
1/2
v (1 − rv)

)
, (9.4)

with sample values of C given below (9.1). Using now the additional boundary
condition ∂T /∂r = −βλ(drv/dx) at r = rv , obtained from (6.13) with uv =1, provides

C exp[−(rv − 1)2/(4x)]

2r
1/2
v

√
x

= −βλ
drv

dx
, (9.5)

as an evolution equation for rv(x), which can be approximately solved for small values
of λ to give

rv = 1 − 2

{
x ln

[
λ−1

[ln(λ−1)]1/2

]}1/2

. (9.6)

According to (9.6), the penetration distance for dilute sprays

xv =

{
4 ln

[
λ−1

[ln(λ−1)]1/2

]}−1

, (9.7)

obtained from (9.6) with rv =0, depends only on the parameter λ, all other parameters,
including the velocity and temperature in the coflow, entering only in determining
the higher-order corrections. Also of interest is that the modifications associated
with curvature do not affect the solution at the order displayed in (9.7) in that the
same prediction for the penetration distance is obtained by setting rv equal to zero
in ηv = (rv − 1)/

√
x, derived above as the location of the vaporization front within

the annular mixing layer that departs from the injector rim, with ηv determined by
solving (9.2) for λ� 1. The prediction (9.7) is tested in figure 9, giving good agreement
for the different conditions considered.
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10. Conclusions
For a laminar, equilibrium, monodisperse fuel spray emerging steadily at a constant

velocity from a round tube into a hot, chemically inert coflowing stream having a
different constant velocity but the same molecular weight as the gas in the spray
tube, the axisymmetric two-fluid conservation equations that account for finite-rate,
diffusion-controlled evaporation and Stokes drag of spherical droplets in an ideal gas
were integrated numerically to demonstrate explicitly the development of a regime of
sheath vaporization as the ratio of the characteristic time of jet evolution associated
with spray vaporization to the characteristic time for transverse diffusion across the
jet approaches zero. This sheath-vaporization regime develops irrespective of whether
the ratio of the mass of liquid to the mass of gas in the spray stream is large or
small. If that ratio is large, then sample computations for octane sprays in air with a
Lewis number of unity show explicitly that the fuel jet initially expands appreciably,
its outer boundary being determined by the trajectory of the outermost droplet,
until that droplet is completely vaporized, after which the outer boundary contracts,
increasingly rapidly as the tip of the spray is approached. If, on the other hand, that
mass ratio is small, then there is very little initial expansion of the jet, the shape of
which now resembles a pointed icicle, much shorter than the jet for high liquid mass
ratio because of the smaller amount of liquid to be vaporized.

In the limit of sheath vaporization, the initial expansion of the jet no longer
occurs, there being a narrow vaporization layer, across which jump conditions are
derived, connecting solutions of outer droplet-free differential equations to solutions
of inner partial differential equations that describe the velocity and gas-phase fuel-
concentration fields of the spray, the other variables there retaining their tube-exit
values in the first approximation. The resulting free-boundary problem was also
integrated numerically, making use of a mixing-layer solution near the injector rim,
obtained numerically as well, to provide the necessary initial conditions for this
parabolic problem. The numerical results give, for example, the jet penetration length
as a function of the liquid-to-gas mass ratio of the spray for various ratios of
coflow-to-spray temperatures and velocities, explicitly exhibiting the decrease in jet
width and the increase in jet penetration length with increasing liquid-to-gas mass
ratio.

Analytical formulae derived for the jet penetration distance in the dense-spray
(large liquid-to-gas mass ratio) and dilute-spray (small liquid-to-gas mass ratio) limits
agree reasonably well with the numerical results in those limits. In the dilute-spray
limit, the penetration length is proportional to the product of the jet exit velocity
and the transverse diffusion time, the proportionality constant depending only on the
ratio of the liquid mass to the gas mass in the spray and increasing only weakly
(inverse logarithmically) as this ratio increases. It is noteworthy that, in this limit, the
penetration distance is entirely independent of the properties of the coflow stream at
leading order, being controlled completely by the properties and dimensions of the
lightly liquid-loaded spray.

If the coflow velocity is small enough, then the same proportionality of penetration
length to the product of the jet exit velocity and transverse diffusion time occurs in the
dense-spray limit as well (and therefore for all ratios of liquid-to-gas mass), but the
proportionality constant increases much more strongly with increasing liquid-to-gas
mass ratios (namely, in proportion to the product of this ratio with its logarithm)
and, in addition, depends (relatively weakly) on the coflow temperature and the
Prandtl number, decreasing as either of these increases. On the other hand, if the
coflow velocity is sufficiently large, then in the dense-spray limit, the penetration
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distance is independent of the initial jet velocity but instead is proportional to the
product of the coflow velocity and the transverse diffusion time, the proportionality
constant again increasing more strongly with the liquid-to-gas mass ratio, and while
it still decreases slowly with increasing coflow temperature, now its dependence on
the Prandtl number is reversed. These last dependences, however, apply only for
rather large coflow velocities, and at smaller coflow velocities the penetration length
actually decreases with increasing coflow velocity, counterintuitively, as a consequence
of a decrease in the coflow velocity producing an increase in the radial distance over
which external heat conduction occurs, through reduction of entrainment, thereby
decreasing the rate of heat transfer to the spray from the surrounding hot gas.

The results, in general, improve our knowledge of fuel-spray jet structure
and penetration. Although formally restricted to steady laminar flow, qualitative
interpretations for turbulent flows may be achieved by replacing the laminar viscosity
by a turbulent viscosity, so long as the development of the spray is not significantly
influenced by wall boundary layers and recirculation, for example. The regime of
sheath vaporization, in particular, is often likely to be encountered in practice, and
the present results may aid in insights into phenomena to be expected in that regime.
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