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Exploited fish species may have or are experiencing declines in population sizes coupled
with changes in their environmental conditions owing to global change. Declining
populations might lead to a decrease in genetic diversity, which in turn may produce
losses of adaptive potential to face current and future environmental changes. Thus, this
study aims to answer a simple, even naive question, given the complexity of the subject:
Could we use a simple method to obtain information on the loss of genetic diversity in
exploited fish species? We investigated the use of the levels of genetic diversity in the
widely used genetic marker Cytochrome C Oxidase subunit I (COI) mitochondrial gene.
Estimates of genetic diversity in COI were obtained for populations of seven fish species
with different commercial importance from the East China Sea. These estimates were
contrasted against large datasets of genetic diversity in COI for fish species (East-Asian
N=118, and worldwide N=1425), and six control species with known biology and history.
We found that estimates of genetic diversity in COI match the expectations from
theoretical predictions and known declines by fishing pressures. Thus, the answer to
our question is affirmative and we conclude that estimates of genetic diversity in COI
provide an effective first diagnostic of the conservation status of exploited fish species.

Keywords: adaptive potential, COI barcode, conservation, fisheries, global change, over-fishing, resilience
INTRODUCTION

The exploitation of species’ wild populations can produce declines in population sizes, and even
drive species to extinction (Hutchings and Reynolds, 2004; Allendorf et al., 2008). Such exploitation
has the potential to cause three types of genetic change: alteration of population structure and
connectivity, selection induced genetic changes, and loss of genetic diversity (Allendorf et al., 2008;
Abbreviations: COI-p, genetic diversity in Cytochrome C Oxidase subunit I (COI) mitochondrial gene.
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Gandra et al., 2021). Moreover, global-change related impacts on
marine environments such as climate change and habitat
degradation are already impacting fish populations, increasing
their risk of local extinction (Sumaila and Tai, 2020). As genetic
diversity is the raw material for natural selection allowing species
to adapt to new environmental conditions, its loss will decrease
species adaptive potentials (Spielman et al., 2004; Conover et al.,
2006; Allendorf et al., 2008; Hare et al., 2011; Pinsky and
Palumbi, 2014; Bernatchez et al., 2017; Gandra et al., 2021).
Hence, exploited species with eroded genetic diversity can be
threatened by the loss of their adaptive potential to respond to
changes in their environments owing to global change.

Fish species have been exploited for several decades decreasing
their population abundances and changing their age composition
(Hutchings and Reynolds, 2004; FAO, 2020; Sumaila and Tai,
2020). However, the evidence of loss of genetic diversity by this
exploitation has been rather contradictory with some studies
showing decreased genetic diversity in exploited species (e.g.
Hauser et al., 2002; Pinsky and Palumbi, 2014) but others did not
(e.g. Pinsky et al., 2021). Pinsky and Palumbi (2014) addressed the
question of the loss of genetic diversity in exploited fish species by a
meta-analysis comparing genetic diversity estimates based on
microsatellite genetic markers from exploited and non-exploited
species, finding allelic richness loss in highly exploited fish
populations. Moreover, Gandra et al. (2021) found a significant
correlation between fish commercial importance and genetic
structure, suggesting that commercially exploited species exhibit
lower levels of genetic differentiation among populations.
Nonetheless, genetics is rarely taken into account in fisheries
management with the potential outcome of a hidden loss of
adaptive potential to environmental changes in exploited fish
species (Hauser and Carvalho, 2008; Allendorf et al., 2014; Pinsky
and Palumbi, 2014; Ovenden et al., 2015; Casey et al., 2016;
Bernatchez et al., 2017; Bryndum-Buchholz et al., 2021; Ovando
et al., 2021; Gandra et al., 2021). Implementation of genetic
evaluations for fish stocks in fisheries has been challenging.
Reasons for this are that studies with more traditional
microsatellite markers can be laborious and while new sequencing
technologies are powerful to address these subjects (Hauser and
Seeb, 2008; Bernatchez et al., 2017), specific training is required and
high-throughput sequencing is costly, hence limiting the number of
species to be studied.

Mitochondrial genetic markers have been used for phylogenetic
and population genetics studies for many years. Andmore recently
the use of Cytochrome Oxidase subunit I (COI) mitochondrial
gene has widely increased for species identification (Ratnasingham
and Hebert, 2007). Although the extensive use of this marker has
raised some criticism because mitochondrial genome evolution has
different characteristics than the nuclear genome such as haploidy,
lack of recombination, and uniparental inheritance; the use of
mitochondrial genetic markers gives very valuable information for
under-studied species (Rubinoff and Holland, 2005). Therefore, if
the differences and limitations of mitochondrial molecularmarkers
are taken into account, their use can provide preliminary insights
into population changes. For example, declines in population sizes
are expected to decrease genetic diversity in both, mitochondrial
Frontiers in Marine Science | www.frontiersin.org 2
and nuclear genomes as exhibited in threatened mammal species
(e.g. Casas-Marce et al., 2017; van der Valk et al., 2018). Thus,
despite uncertainties on how much mitochondrial genetic
variation can inform on the overall evolutionary history of the
species, it can inform on demographic changes, and especially on
declines in population sizes. Petit-Marty et al. (2021) demonstrated
that the level of genetic diversity in the COI mitochondrial gene
can be used as a proxy of the species’ conservation status. By using
a curated dataset of COI genetic diversity estimates for more than
4000 animal species, significant differences were revealed between
threatened and non-threatened animal species assessed by the
International Union of Conservation of Nature (IUCN). After
accounting for many biases, differences in levels of genetic diversity
in COI were associated with declines of population census in
threatened species, because species assessed as threatened in IUCN
show evidence of global decline whereas non-threatened species do
not. Differences were especially significant for 1425 worldwide
distributed fish species (Petit-Marty et al., 2021). Moreover, a more
recent article found similar results in birds by using Cytochrome b
mitochondrial gene (Canteri et al., 2021). Additionally, a positive
correlation between mitochondrial and nuclear genetic diversity
has been found for fish species (Piganeau and Eyre-Walker, 2009).
Thereby, genetic diversity loss in mitochondrial genomes due to
population declines correlates with the loss of genetic diversity in
the nuclear genome and can therefore, inform on the conservation
status of fish species populations.

Fisheries management, including fishing restrictions, varies
widely across the globe (FAO, 2020; Bryndum-Buchholz et al.,
2021; Ovando et al., 2021) as does the effect of fishing pressures,
leading to the need for local assessments offish populations. Data
of stocks abundance and age composition for economically
important species have been documented for decades (FAO,
2020; Ovando et al., 2021), yet fisheries statistics are poor for
many fish species with minor economic importance. Ideally, the
study of genetic diversity loss in wild populations would require
samples from before and after species exploitation, however,
such data is mostly not available for commercial fish species.
Therefore, an alternative approach is to use comparative datasets
of genetic diversity in related species (the so-called macro-
genetics approach Blanchet et al., 2017). In this sense, the COI
mitochondrial gene has the advantage to be widely studied as a
barcode sequence in many species for their identification
(Ratnasingham and Hebert, 2007). Therefore, hundreds of
thousands of fish COI sequences are available in public
databases (e.g. GenBank and Barcode of Life Data (BOLD)
System), which can be used as comparative frameworks to
assess the loss of genetic diversity under exploitation scenarios.
Moreover, given its wide use as a genetic barcode, this molecular
marker has the potential to be easily implemented in fisheries
evaluations as getting sequences of many species does not require
advanced training or huge budgets.

In this study we extend the results found in Petit-Marty et al.
(2021) by evaluating populations of seven fish species accordingly
to their levels of genetic diversity in COI. The evaluated fish
species were collected from the East China Sea where there is
evidence of an elevated exploitation (Chang et al., 2012; Liang and
May 2022 | Volume 9 | Article 872537
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Pauly, 2017; Zhang et al., 2018; Sumaila, 2019; Teh et al., 2020;
Zhang et al., 2020). The genetic diversity levels in COI were
contrasted to large datasets of worldwide and East Asian fish
species. As knowledge on the biology and population dynamics of
the evaluated species is limited, we validate the results by a
comparison to six control species with known biology and
population dynamics. We aim to provide a first genetic
approximation to the conservation status of a species’
population status which may be used as a guide to prioritizing
management efforts.
METHODS

Sampling and Species Identification
Fixed nets were settled in 6 different locations within the Sansha
Bay in Nindge, Fujian Province of China (East China Sea,
Latitude: 119°43’-119°49’; Longitude: 26°34’-26°41’) once a
month (full or new moon phase) from April to September of
2020. Fin clips were stored in alcohol 95% for the collected fish
species. Overall, fin clips were stored for 43 species
(Supplementary Table S1). We selected ten fish species with
accumulated sample sizes larger than 30 individuals as
representatives of the most abundant fish in Sansha Bay
(Supplementary Table S1). One of the species, Larimichthys
crocea, is not representative of wild populations but farmed
resulting from long-term (since 2002), restocking activities in
Sansha Bay after the natural populations were depleted in the
1980s (Liu and Sadovy de Mitcheson, 2008; Liu et al., 2020; Yuan
et al., 2021), and it was taken as a negative control (i.e. expected
low genetic diversity) in the evaluation of the other fish species.
We also processed samples from another farmed species
collected in Hong Kong waters, the hybrid Sabah grouper
(Epinephelus fuscoguttatus females x E. lanceolatus males),
which was also used as a negative control in the evaluation
analysis. Both farmed species, L. crocea and sabah grouper very
likely experienced a decrease in their levels of genetic diversity by
the founder effect when starting the farms (Wang et al., 2012).
Moreover, wild populations of L. crocea were assessed as
critically endangered (Liu et al., 2020), while E. fuscoguttatus
(female of the hybrid, Rhodes et al., 2018) had been assessed as
vulnerable, and therefore both species presented evidence of
decline in populations sizes >30% (i.e. the cut-off used in IUCN
to classify a species as threatened) before starting farming.
Additionally, we processed samples of four highly commercial
fish species (Lophius budegassa, Merluccius merluccius, Mullus
barbatus and Mullus surmuletus) from Balearic Islands (western
Mediterranean, Latitude: 38°50’-40°50’; Longitude: 2°00’-4°50’)
which present long-term managed fisheries and fishing
restrictions. These species were collected during the MEDITS
bottom trawl surveys in 2020, which are carried out annually
during spring and early summer trough the Balearic Islands (for
sampling protocol see Spedicato et al., 2019).

DNA was extracted from fin clips for 24 samples of the ten
representative species from Fujian, 20 samples of the hybrid
grouper from Hong Kong and among 19-45 samples from the
Frontiers in Marine Science | www.frontiersin.org 3
four species of Balearic Islands using the DNAeasy blood and
tissue Qiagen kit. COI mitochondrial gene was amplified by PCR
following the protocol of Ivanova et al. (2007), with a final
volume of 15 ul and 4 ul of DNA (1ng/ul) using the primers
cocktail COI-3. PCR products were purified with the Qiagen
PCR purifying kit and sequences were obtained by a Sanger
sequencer from the Centre of PanorOmic Sciences of the
University of Hong Kong using the same primers as in the
PCR and 6-12 ng of purified PCR products. Sequences with
average phred scores > 50 and samples sizes ≥ 19 were
successfully achieved for nine out ten of the more abundant
species collected in Fujian (i.e. all but C. oligolepis), the hybrid
grouper, and the four species from Balearic Islands. All species
were taxonomically identified by an expert and species identity
by COI sequences was confirmed in BOLD system (http://www.
boldsystems.org, Ratnasingham and Hebert, 2007). The
taxonomic identity of the species was the same for the visual
and molecular identification for all but one, S. fuscescens for
which the identification at species level was not possible in BOLD
system and therefore it was not included in further analyses.

Sequences were aligned using Muscle software (Edgar, 2004)
and genetic diversity estimates (the average number of
nucleotide differences per site between two sequences, p, Nei,
1987), and isolation index, FST, were obtained using DNAsp
software (Rozas et al., 2017). We used p (Nei, 1987) genetic
diversity estimates (COI-p) instead of Ɵ (Watterson, 1975)
because the former is based in frequency and therefore, a
better indicator of demographic changes (Tajima, 1989). Two
different clades have been recognized by DNA barcoding in
Trypauchen vagina (Thu et al., 2019), accordingly, the sequence
identification in BOLD systems shows the presence of the two
clades among our sequences. The two clades are genetically
different (FST =0.97, pFst=0.018), and therefore, we only present
the results for the major clade found in our dataset of T. vagina
(N=15). Variation in estimates of genetic diversity based on
samples sizes larger than 15 is lower than < 5e-4 in COI for
species with COI-p < 0.01, (Petit-Marty et al., 2021), and thus,
our estimates can be considered representative of the population.
All sequences are deposited in NCBI nucleotide database with
accession numbers: Collichthys lucidus: OL673515-OL673535;
Crenimugil crenilabis: OL673809-OL673829; Harpadon
nehereus : OL673927-OL673947; Larimichthys crocea :
OL674152-OL674171; Lophius budegassa : OL674085-
OL674103; Merluccius merluccius: OL684344-OL684384;
Mullus barbatus: OL684891-OL684915; M. surmuletus:
OL674197-OL674229; sabah-grouper: OL674054-OL674073;
Stephanolepis cirrhifer: OL684530-OL684553; Takifugu
oblongus: OL684869-OL684890; Thryssa vitrirostris: OL679101-
OL679121; and Trypauchen vagina: OL684325-OL684339.

Data Analyses
Overall trait data on the species, such as commercial importance,
body size, geographic distribution, habitat, and generation times
for the East Asia species were retrieved from Fishbase (https://
www.fishbase.se; Froese and Pauly, 2021), IUCN species
assessments (https://www.iucnredlist.org), and references of
studies from individual species and fisheries assessments.
May 2022 | Volume 9 | Article 872537
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Population trends and habitat information for Balearic Islands
species was obtained from local assessments (Di Natale et al.,
2011; Papakonstantinou et al., 2011; Guijarro et al., 2012;
Guijarro et al., 2019a; Guijarro et al., 2019b), with the
except ion of L. budegassa , for which the Centra l
Mediterranean data was used, the closest area where this stock
has been assessed (Fiorentino et al., 2012).

Species were classified for their commercial importance as
highly, minor, and not commercial. We considered highly
commercial species those under fishing pressures in their
whole distribution and traded in local, national, and
international markets. Minor commercial, are species that are
traded only in local and/or national markets and therefore, their
levels of exploitation can vary across its distribution. Finally, not
commercial are species not suitable for human consumption.

To investigate the confidence intervals (CIs) of COI genetic
diversity values (COI-p) we used the dataset of fish species
obtained by Petit-Marty et al. (2021) as a comparative
framework (N=1425). As genetic diversity in fish has been
related to latitude (Manel et al., 2020) and habitat preferences
(Martinez et al., 2018), we also estimated regional 95% CIs
filtering the worldwide dataset for species distribution (East
Asia and Mediterranean) and habitats (Marine and Estuaries
species for East-Asia, and Marine for Mediterranean). In order to
get more conservative average estimates of genetic diversity in
the regional datasets, the COI-p estimates based on sample sizes
of N<15 or higher than the upper boundary of the mean 95% CI
of the worldwide dataset were eliminated. The list of species and
their estimated genetic diversity values used for the comparative
frameworks of East-Asian and Mediterranean are presented in
Supplementary Table S2. The 95% CI of the median and mean
values of genetic diversity in COI were obtained by the boot
package (Hesterberg, 2011) in R by bootstrapping 10,000
datasets of the mean and median values of p. The 95% CI of
the mean and median values for a worldwide dataset of fish
species (N= 1425) did not overlap between threatened (i.e.
assessed as VU, EN, and CR in IUCN, N=112) and non-
threatened fish species (i.e. assessed as LC at IUCN, N=1260)
as previously showed in Petit-Marty et al., 2021 (Supplementary
Figure S1). However, mean values are biased to high values
owing to the not normal distribution of COI-p (Supplementary
Figure S1). Thus, we used the more conservative 95% CI of
median values calculated for East Asian fish species dataset
(Supplementary Table S3) to set up the boundaries for the
evaluation of East-Asia species. Thus, we took the 95% CI low
and upper boundaries of East Asian species dataset to classify
species according to the need of further research on their
conservation status (First, Medium and Low Priority). The
95% CI of the COI-p median were slightly lower for
Mediterranean than East-Asian species, while the 95% CI low
boundary was coincident between East-Asia and worldwide
distributed species (Supplementary Table S3).

Simulation Analyses
Coalescent simulations are useful to inform on the expectations
in decreases of genetic diversity by population declines under a
neutral model of evolution. We used msms program to generate
Frontiers in Marine Science | www.frontiersin.org 4
samples under a Wright-Fisher neutral model of genetic
variation (Gutenkunst et al., 2009) simulating declines of
population sizes. We evaluated a simple model that does not
account for the complex dynamics of fish populations, but
enhances the expectations of levels of genetic diversity under
the effects of continued harvesting. In the simulations, the
populations experienced a decline in population census in a
given past time, with no recombination, no migration, and no
further population expansion after declines. We used a value of
starting genetic diversity of Ɵ=2.5 (~Neµ; Watterson, 1975)
which is equivalent to the median value observed for East-
Asian and worldwide fish species datasets (Supplementary
Table S3). We tested different effective population sizes (10e4,
10e5, and 10e6), different degrees of declines in population sizes
(10%, 30%, 50%, and 90%), and different times where the
population decline occurs (1, 10, 100, 10e3, 10e4, and 10e5

generations ago) and evaluated the average values of the
average pair-wise nucleotide differences among sequences of
650 base pairs for 1000 random samples of 20 individuals.
Thus, 72 independent simulations were performed: three
different effective population sizes; by four different
magnitudes of population declines; and by six different times
where declines happened in the past.
RESULTS

The evaluation of the species from Fujian (East China Sea) shows
that four out of seven species (the two highly commercial:
Harpadon nehereus, and Stephanolepis cirrhifer; and two minor
commercial: Crenimugil crenilabis, and Trypauchen vagina)
exhibit COI-p below those expected for 95% CI of the median
for worldwide and East-Asian species (Figure 1 and
Supplementary Table S3), and within the expectations for
world-wide threatened species (Supplementary Figure S1).
Therefore we classified these four species from Fujian with
detected reduced values of COI-p as First Priority species for
further research on their populations’ conservation status
(Figure 1). The non-commercial fish Takifugu oblongus was
the only species presenting COI-p levels higher than expected by
the upper boundary of the 95% CI of the median for East-Asian
species and was classified as Low Priority species, while the other
two minor commercial species (T. vitrirostris, and C. Lucidus)
showed averaged values of genetic diversity and were classified as
Medium Priority species (Figure 1).

We contrasted the levels of COI-p of these four First Priority
species to those of two farmed species, L. crocea and the hybrid
Sabah grouper, finding that the levels of COI-p in the farmed are
lower than 95% CI low boundary of East-Asian species and
similar or even higher than the First Priority species (Figure 1
and Table 1).

Comparing the levels of COI-p among the First Priority
species and the long-term managed species from Balearic
Islands show that the two species of Mullus (Mullus barbatus,
and M. surmuletus; Table 1) presented levels of COI-p within
the expected for the worldwide and Mediterranean dataset
May 2022 | Volume 9 | Article 872537
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(Figure 1 and Supplementary Table S2). In contrast, the other
two long-term managed species from Balearic Islands, M.
merluccius and L. budegassa, show levels of COI-p below the
low boundary of 95% CI for Mediterranean and worldwide
species and similar to those of First Priority species (Figure 1
and Supplementary Table S2). The differences observed in the
levels of COI-p among long-term managed species from
Mediterranean Sea could be related to differences in generation
times because M. merluccius and L. budegassa have longer
generation times (~10 years) than the two small Mullus species
(~4 years, Table 1) and First Priority species (≤ 3 years, for
species with known generation times, Table 1).

Finally, we used coalescent simulations to find out what are
the expectations in decreases of genetic diversity by population
declines under a neutral model of evolution. The results of such
simulations show that under a simple neutral model of molecular
evolution and a reduction in population census, with no
recombination, no migration and no population expansion
after declines; the average decreases in levels of genetic
diversity are proportional to the decline in population census
produced in a time lapses smaller than Ne generations ago (i.e. in
average nearly 10% of genetic diversity loss for 10% decline in
census and so on, Figure 2). The time range when industrial
exploitation of fish began is likely ≤ 100 generations ago. Within
this time window (Figure 2) declines in genetic diversity
produced by declines in population census are independent of
the long-term Ne. We found that the average probability (among
Frontiers in Marine Science | www.frontiersin.org 5
the three Ne tested) to find values of genetic diversity higher or
equal to the starting value (i.e. Ɵ= 2.5) among 1000 generated
neutral samples was p<0.005, 0.1, 0.2, and 0.4 for declines in
populations census of 90%, 50%, 30%, and 10%, respectively.
Therefore, strong declines in population census of 90% will
significantly produce decreases in genetic diversity in all
sampled populations, while softer population declines of
around 50% could not show evidence of genetic diversity loss
in around 10% of the sampled populations. Assuming that the
average level of COI-p*1000 in fish is nearly 2.5, the simulations
indicate that the species classified here as First Priority (Figure 1)
could have experienced declines in population sizes from 23% in
S. cirrhifer to 95% in H. nehereus.
DISCUSSION

Contrasting the levels of COI genetic diversity (COI-p) of the fish
collected in Fujian (East China Sea) against expected average
levels for worldwide and East Asian species reveals only one
species with elevated levels of genetic diversity above the
expected average for East-Asian and worldwide species. This is
Takifugu oblongus which is a poisonous species and not
consumed in East China (Shao et al., 2014). In contrast, the
two highly commercial species H. nehereus and S. cirrhifer, and
two minor commercial species, T. vagina and C. crenilabis
exhibit levels of genetic diversity below the expected average
FIGURE 1 | Levels of genetic diversity in COI mitochondrial gene (COI-p) of fish species. Species were ordered by their levels of COI-p and these were multiplied by
1,000 for graphical purposes. The red line shows the lower boundary of the 95%CI of the distribution of median genetic diversities values obtained by bootstrapping
worldwide and East Asian fish datasets. The green line shows the upper boundary of the 95%CI of the median distribution of genetic diversity in East Asian fish. The
upper-boundary of worldwide dataset was 0.004, while the 95%CI for Mediterranean species was 0.0028-0.0042 (Supplementary Table S3). Fish from Fujian are
the evaluated species (dark blue) in this study. Both, fish from Balearic Islands (light blue) and farmed (grey) fishes were used as controls, as fish from the Balearic
Islands are long-term managed species with known population dynamics, and the two farmed fish are expected to have low levels of genetic diversity. Highly
commercial species are under fishing pressures in their whole distribution while fishing pressures are variable for minor commercial species. Credits for fish
silhouettes: Gaston Petit.
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for East-Asian and worldwide species. Evidence of over-
exploitation has been found for the two highly commercial
Fujian’s species, H. nehereus, and S. cirrhifer (Matsuura et al.,
2019; Russell et al., 2019), while artisanal fishing and by-catch are
major threats for all minor commercial species evaluated in this
study with the only exception of C. crenilabis which is under-
studied (Hoese and Sparks, 2017; Dinh, 2018; Larson, 2019;
Hata, 2020; Nguyen Van et al., 2020; Zhang et al., 2020).
However, the lack of studies on biology and previous
population census of these species likely excluded many of
them being assessed as threatened. Thus, the first result
emerging from our comparative analyses indicates that both
high and minor commercial species from Fujian (East China Sea)
could have experienced decreases in their levels of genetic
diversity by fishing pressures declining their population census.
This empirical data is also supported by simulations showing
that the expected decrease in average genetic diversity in absence
of migration and population expansion is proportional to the
Frontiers in Marine Science | www.frontiersin.org 6
decline in population census happened in lapses of time smaller
than Ne generations ago. Although, significant decreases in
genetic diversity are expected when declines in population
census are high (i.e. >50% of decline), we found more than
80% of the simulated samples showing a decrease in the levels of
genetic diversity when declines in population census were ≥30%
(i.e. cut off to be considered as threatened under IUCN criteria).
The best example of expected genetic diversity decrease with a
decline in population census is H. nehereus, the species with the
strongest evidence of unmanaged exploitation across its whole
distribution (Russell et al., 2019) among the evaluated species.
We found that the levels of genetic diversity in COI for H.
nehereus could be explained by a decline in population size of
more than 90%. In fact, though local assessment in Fujian has
not been performed for this species, the decline in global
population census was already estimated to be larger than 30%,
with detected local declines of nearly 80% in Indonesia (Russell
et al., 2019). Therefore, the observed genetic diversity in COI
TABLE 1 | Sampled fish species, their characteristics and genetic diversity estimates in COI mitochondrial gene (COI-p).

Species Commercial
importance

IUCN Pop.
trends

Threats Movements/Habitat Max.size (cm)/
gen.times (year)

COI-p N

Evaluated species from Fujian
Collichthys lucidus minor LC unknown Overfishing/

by-catch
Oceanodromous/
Marine-Neritic, subtidal, estuaries

17/1y 0.0040 21

Crenimugil crenilabis minor LC unknown Overfishing/
by-catch

Non-migratory/
Marine-Neritic, coral reef, estuaries;
wetland (inland)

60/nd 0.0020 21

Harpadon nehereus high NT decreasing Overfishing Oceanodromous/
Marine-Neritic, subtidal, estuaries

40/3y 0.0002 21

Stephanolepis cirrhifer high LC stable Overfishing Oceanodromous/
Marine-Neritic, subtidal

30/nd 0.0027 24

Takifugu oblongus not LC decreasing Unknown nd/
Marine-Neritic, subtidal, estuaries
Marine-intertidal, mangroves

40/nd 0.0062 23

Thryssa vitrirostris minor LC unknown Overfishing/
by-catch

nd/
Marine-Neritic, pelagic, estuaries

18/1y 0.0035 21

Trypauchen vagina minor LC unknown Overfishing/
by-catch

Amphidromous/
Marine-Neritic, coral reef, estuaries;
Marine-intertidial, mud, mangroves;
wetland (inland)

18/1y 0.0024 15

Control farmed species
Larimichthys crocea Mostly farmed- – – – Oceanodromous

Marine-Neritic, subtidal, estuaries
80/15y 0.0024 20

Sabah grouper
(Epinephelus fuscoguttatus x E.
lanceolatus)

Farmed – – – Oceanodromous
Marine-Neritic, coral reef, seagrass,
estuaries

>200/25.5y* 0.0020 20

Control species from long-term managed fisheries in Balearic Islands
Lophius budegassa high LC Oscillating Overfishing Low migrant

Demersal (deep shelf and slope)
90/10y 0.0016 19

Merluccius merluccius high VU Oscillating Overfishing Low migrant
Demersal (deep shelf and upper
slope)

82/9y 0.0018 41

Mullus barbatus high LC Decreasing Overfishing Low migrant
Demersal (Shallow and deep
continental shelf)

30/3.6y 0.0035 25

Mullus surmuletus high LC Decreasing Overfishing Oceanodromous
Demersal (Shallow and deep
continental shelf)

39/4.1y 0.0047 34
M
ay 2022 | Volume 9 | Ar
ticle 8725
Species were sorted alphabetically within each fish category (evaluated, farmed and long-term managed species. Max.size indicates maximum size registered in cm, gen.times is
generation time in years, IUCN, IUCN assessments, N; analysed sample size. nd, no data; Pop trends, populations trends. Population trends and threats were obtained from IUCN reports
for evaluated species and from fisheries evaluations in the Mediterranean for long-term managed species. Information about movements/habitats, maximum size and generation times
were retrieved from FishBase, and from scientific reports when available.*based on E. fuscoguttatus.
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found in H. nehereus mostly reflects the reported declines in
population census in the IUCN assessments, indicating that the
use of COI-p is a good proxy for the conservation status of its
populations. The loss of genetic diversity in exploited fish species
could compromise their adaptive potential to environmental
changes. Therefore, priority in research and monitoring should
be given to those species showing reduced levels of genetic
diversity in COI.

Further case-study research should be performed for species
with observed reduced genetic diversity in COI because beyond
declines in population census by exploitation, the levels of genetic
diversity are also affected by biological, ecological and evolutionary
history characteristics of the species. Species traits such as, long-
term effective population size (i.e. the effective population size of
the species in equilibrium before demographic changes, Ne),
generation times, variability in reproductive success, distortion
in sex-proportion, connectivity among populations, age and stage-
structured populations, geographic distribution and habitat
preferences had been related to differences in levels of genetic
diversity (Hauser and Carvalho, 2008; Hare et al., 2011; Pinsky and
Palumbi, 2014; Martinez et al., 2018; Manel et al., 2020; Gandra
et al., 2021). Moreover, adaptive selection in mitochondrial
genome could produce decrease in genetic diversity (Bazin et al.,
2006) and this effect can be only detected in case-study research
(Lynch et al., 2006). The current knowledge of the evaluated
species and the power of this study are not sufficient for a complete
evaluation of all potential factors affecting genetic diversity, but we
Frontiers in Marine Science | www.frontiersin.org 7
can have a preliminary evaluation of some of them by including
knowledge from the species used as controls in this study.

Long-Term Effective Population Size (Ne)
Estimates of Ne are unavailable for the evaluated species but we
can have a proxy by using body size which correlates negatively
with Ne (Lynch and Conery, 2003; Pinsky and Palumbi, 2014).
Most of First Priority species evaluated here have small sizes and
therefore, they are comparable to the two species with short body
sizes from Balearic Islands, M. barbatus and M. surmuletus
which present higher levels of COI-p, despite a tendency to
declining populations found for both species (Guijarro et al.,
2012; Guijarro et al., 2019a). Moreover, the two farmed species
with expected reduced Ne by large body sizes and known
population declines by exploitation (Rhodes et al., 2018; Liu
et al., 2020), and founder effects starting the farms (Wang et al.,
2012), presented low levels of COI-p similar to First Priority
species. Hence, these comparisons suggest that the reduced levels
of COI-p found in the First Priority species are more likely a
result of declines of population census by fishing pressures in
East Asia than differences in long-term Ne.

Generation Times
Body size is also positively correlated to generation times (Lynch
and Conery, 2003; Pinsky and Palumbi, 2014), and our results
show the expected theoretical differences in the levels of genetic
diversity in COI between large and small species with known
A B

DC

FIGURE 2 | Average genetic diversity loss expected by declines in population census of 90% (A), 50% (B), 30% (C), and 10% (D) of its original size. Each mark
represents the average loss of genetic diversity expected from 1000 random-generated samples that experienced a decline in population census at a different time
(100,000; 10,000; 1,000; 100; 10; or 1 generations ago). Three different effective population sizes were simulated (Ne=10e6, 10e5 and 10e4) for each time of decline
and each percentage of decline (N=72 simulations in total). The starting value of Ɵ was 2.5, which is an approximation to the median value of worldwide and East
Asia fish datasets (Supplementary Table S2).
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differences in generation times from Balearic Islands. As the
neutral theory of molecular evolution explains, the observed
levels of genetic diversity account for events (demographic or
selective) that happened between 1 and ~Ne generations ago
(4Ne for nuclear markers, Lynch and Conery, 2003). Therefore,
for species with long generation times, as is the case for the two
large species from the Balearic Islands L. budegassa and M.
merluccius (~10 years), if the long-term effective population size
is Ne>~10e3, the levels of genetic diversity in these species may
account for past events such as the last glacial period producing
decreases in genetic diversity (Pinsky and Palumbi, 2014).
Hence, for species with large generation times (i.e. > 5 years)
and unknown long-term Ne, reduced levels of COI-p could
reflect not only current exploitation but also historical events.

Connectivity Among Populations
Migration is a likely source of genetic variation in fish
populations from both, adults and pelagic larval stages,
counteracting the effects of local declines (Hauser and
Carvalho, 2008; Pinsky and Palumbi, 2014; Martinez et al.,
2018). Three evaluated species from Fujian are known to be
oceanodromous (i.e. seasonally migratory fishes). These species
have different commercial values (i.e. Minor: C. lucidus vs High:
H. nehereus and S. cirrhifer) and we observed the highest levels of
COI-p in the species with minor commercial importance. This
comparison suggests that for the Medium Priority species C.
lucidus with minor commercial importance and likely variability
in fishing pressures across its distribution, the levels of genetic
diversity could be maintained owing to migration. However, for
the highly commercially important species (H. nehereus and S.
cirrhifer), which are under fishing pressures throughout its
distribution range, the levels of genetic variation are likely
decreasing globally for the whole species. Moreover, low COI-p
observed for the non-migratory species C. crenilabis (First
Priority) also suggests that migration may account for the
differences in COI-p levels in minor commercial species. The
same pattern is observed when comparing the twoMullus species
from the Balearic Islands which also differ in their populations’
connectivity, with the highest COI-p in the migratory speciesM.
surmuletus. Therefore, by taking into account migration of the
species, it is suggested that for highly commercially important
unmanaged species in Fujian the detected decrease in genetic
diversity in COI seems to be directly linked to their global fishing
pressures. In contrast, for minor commercial species, differences
in connectivity among populations may account for the
differences in genetic diversity.

Habitat Preferences
Beyond the differences in population connectivity among the two
Mullus species, different habitat preferences may also lead to
differences in the levels of COI-p. M. surmuletus prefers narrow
shelf areas with rocky substrates while M. barbatus is more
abundant in areas where shelf becomes wider with muddy
bottoms (Lombarte et al., 2000; Tserpes et al., 2019). Because
rocky areas are not accessible by bottom trawling, a significant
proportion of the M. surmuletus population is not directly
affected by this threat. Thus, when considering habitat
Frontiers in Marine Science | www.frontiersin.org 8
preferences, the level of fishing pressures is also reflected in the
genetic diversity levels of both long-term managed
Mullus species.

Overall, the results of this study indicate that differences in
the levels of genetic diversity in COI might be preliminarily
explained by differences in fishing pressures causing declines in
population census. Although the limitations of this approach
should be taken into account (see Leigh et al., 2021 for a review);
it can be very useful to prioritize urgent research on loss of
genetic diversity in unmanaged exploited fisheries with scarce
biological and population knowledge. As genetic diversity in the
mitochondrial genome is higher than in nuclear genes (Lynch
et al., 2006) using COI-p gives strong statistical power to detect
potential genetic diversity loss than surveying genetic variation
in the nuclear genome. For example, estimates of nuclear genetic
diversity in cod from samples of more than 100 years ago were
~0.0008 (Pinsky et al., 2021) which would give few chances to
detect genetic diversity loss using samples sizes of 20. Given the
low economic cost of obtaining COI sequences, tens or hundreds
of species could be evaluated with the same sampling effort,
offering a first view of the conservation status of local fisheries.
CONCLUSIONS

Our results indicate that the estimates of genetic diversity in the
mitochondrial gene COI account for: 1) differences in fishing
pressures by commercial importance of the fish species, 2)
theoretical predictions of decreases in genetic diversity
produced by population decline, and 3) known declines in
population census. We found that commercial importance
could be a first factor affecting genetic diversity, whilst the
connectivity among populations seems to be important in
minor commercial species exploited locally. Accordingly, we
conclude that COI genetic diversity levels can provide a much-
needed simple first diagnostic of the conservation status of fish
species under exploitation. This simple and cost-effective tool
can help prioritize research, management, and conservation on
species with suspected loss of genetic diversity potentially
eroding their adaptive potential to global change.
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