
Noname manuscript No.
(will be inserted by the editor)

Efficient parallel implementation of reservoir
computing systems

M. L. Alomar · Erik S. Skibinsky-Gitlin ·
Christiam F. Frasser · Vincent Canals ·
Eugeni Isern · Miquel Roca · Josep L.
Rosselló

Received: date / Accepted: date

Abstract Reservoir computing (RC) is a powerful machine-learning method-
ology well suited for time-series processing. The hardware implementation of
RC systems (HRC) may extend the utility of this neural approach to solve
real-life problems for which software solutions are not satisfactory. Neverthe-
less, the implementation of massive parallel-connected reservoir networks is
costly in terms of circuit area and power, mainly due to the requirement of
implementing synapse multipliers that increase gate count to prohibitive val-
ues. Most HRC systems present in the literature solve this area problem by
sequencializing the processes, thus loosing the expected fault-tolerance and
low latency of fully parallel-connected HRCs. Therefore, the development of
new methodologies to implement fully-parallel HRC systems is of high interest
to many computational intelligence application requiring quick responses. In
this article, we propose a compact hardware implementation for Echo-State
Networks (an specific type of reservoir) that reduces the area cost by simplify-
ing the synapses and using linear piece-wise activation functions for neurons.
The proposed design is synthesized in a Field-Programmable Gate Array and
evaluated for different time-series prediction tasks. Without compromising the
overall accuracy, the proposed approach achieves a significant saving in terms
of power and hardware when compared with recently published implementa-
tions. These techniques pave the way for the low power implementation of
fully-parallel reservoir networks containing thousands of neurons in a single
integrated circuit.

This work has been partially supported by the Spanish Ministry of Economy and Com-
petitiveness (MINECO), the Regional European Development Funds (FEDER), and the
Comunitat Autnoma de les Illes Balears under grant contracts TEC2014-56244-R, TEC2017-
84877-R and a fellowship (FPI/1513/2012) financed by the European Social Fund (ESF)
and the Govern de les Illes Balears (Conselleria d’Educació, Cultura i Universitats).

The authors are with the Electronics Engineering Group at Department of Physics, Univer-
sity of Balearic Islands, Ctra. Valldemossa Km 7.5, Palma de Mallorca 07122, Spain
E-mail: Josep L. Rosselló
j.rossello@uib.com

2 M. L. Alomar et al.

Keywords artificial neural networks · recurrent neural networks · reser-
voir computing · echo sate networks · hardware neural network · field-
programmable gate array · time-series prediction

1 Introduction

Although the majority of artificial neural networks (ANNs) are implemented in
software using conventional processors, numerous applications require the use
of specific hardware [1]. Unlike general-purpose sequential processors, specific
integrated circuits realizing ANN models can take advantage of the inherent
parallelism in the neural processing. In general, specialized ANN hardware
supporting or replacing software may be beneficial in terms of speed, power
requirements, reliability and cost [2, 3]. For example, hardware neural net-
works (HNNs) can be used to speed up the neural processing in high-volume
real-time applications, such as computer vision tasks [4], image search [5] and
data mining [6]. On the other hand, energy-efficient HNNs are demanded in
autonomous/mobile applications constrained in terms of power supply, such
as the control of machines and industrial processes [7], distributed sensory net-
works [8], portable medical applications [9] or handwriting and speech recog-
nition systems [10]. A great research effort has been made to develop efficient
HNN implementations, which has been mainly focused on the design of the
non-linear sigmoidal activation function using either digital [11, 12, 13] or ana-
logue [14] circuits. However, the application of the internal weights present in
ANNs sharply constrains the parallel implementation of massive networks in a
single chip. This is evident when using digital hardware, which requires large
resources, and especially in field-programmable gate arrays (FPGAs) [15]. The
use of approximate multipliers [16] and stochastic computing [15] has been pro-
posed as possible solutions to reduce the hardware requirements at the cost of
accuracy loss. Nevertheless, this shortcoming is assumable when dealing with
computational intelligence applications in which input data may present large
degrees of uncertainty and the processing to be done consists in recognizing
generic patterns.

Reservoir computing (RC) is an affordable technique to implement and
train recurrent neural networks (RNNs) that is suited to processing temporal
information and providing outstanding performance on time-series prediction
and classification tasks [17]. RC has been successfully applied in numerous do-
mains, such as robot control [18], image/video processing [19], wireless sensor
networks [20], financial forecasting [21] or the monitoring of physiological sig-
nals [22]. Fast and efficient hardware designs implementing RC systems can be
interesting for these applications, which require real-time intensive data pro-
cessing and/or the use of low-power devices to ensure a long battery lifetime.
Numerous implementations of the RC concept have been proposed through
the use of unconventional hardware platforms [17] and even some FPGA re-
alizations [23, 24]. As a drawback, most of them are sequentially operated to
enable a reduced use of resources, which compromises the processing speed.

Efficient parallel implementation of reservoir computing systems 3

Fig. 1 (a-b) Reservoir Computing architectures: (a) general architecture of RC where all
connections (Win and W) are random and fixed except those from the reservoir to the
output units (Wout), which are trained for each specific task; (b) reservoir with simple
cyclic topology

The reservoir computing scheme belongs to a wider category, the ANN with
non-iterative learning that present a much more simple and fast configuration
methodology if compared with other types of networks.

In this article, we present a fully parallel implementation realizing large
reservoir computing systems with very few hardware resources. The proposed
digital hardware design presents a low power dissipation and a reduced number
of hardware resources when compared to conventional digital solutions. As a
demonstration of the validity of the approach, we implement a large reservoir
network within an FPGA and evaluate its performance for three traditional
benchmarks on time-series processing (Santa-Fe and Mackey Glass chaotic os-
cillator prediction tasks and the equalization of a non-linear communication
channel). The results are compared with previously-published hardware imple-
mentations of Reservoir Computing systems. We summarize the contributions
of this work as follows:

– We propose a compact methodology for the hardware implementation of
Echo-State Networks (ESN).

– The proposed model enable the implementation of fully parallel-connected
ESN, thus implying a higher processing speed if compared with sequentially-
based solutions.

– The proposed methodology present an accuracy similar than other hard-
ware applications while overall performance (speed-power) is significantly
enhanced.

2 Related work

Different approaches have been proposed for the implementation of Reservoir
computing in electronic systems, most of them based on sequential architec-
tures architectures. Three main types of implementing technologies can be
differentiated (analog, digital and optoelectronic). In the work implemented
by Soriano et al. [25] we find a mixed analog/digital solution using a delayed-
feedback architecture. The incoming signal is pre-processed using a mask and

4 M. L. Alomar et al.

converted to an analog signal to stimulate a Mackey-Glass analog oscillator
that use two operational amplifiers. The output signal of the oscillator is dig-
italized and stored in a register to be feedback with the incoming signal. The
output is also digitally post-processed to evaluate the result of the reservoir.
The model is applied with success to speech recognition and for time-series
forecasting. The main drawback of this approximation is the excessive delay
present within the analog block if compared with fully digital implementations
as the the work proposed by Alomar et al. [24]. In this study, a fully digital
version of the Soriano’s design is implemented with the difference of substi-
tuting the analog non-linear oscillator by a digital one. The proposed model
is applied to time-series forecasting and temporal series recognition. The work
present a low power and a moderate speed due to the sequential nature of
the architecture (based on the implementation of the delay-based oscillator).
A fully-parallel FPGA implementation is developed later by the same au-
thors [23] in which an stochastic approach is used. Stochastic computing is an
emerging unconventional processing methodology that substitute the wide bus
connectors used by traditional binary circuits by single switching bits (coding
the stochastic signals). With this technique, complex binary multipliers can be
substituted by single logic gates and therefore a fully-connected network with
thousands of interconnected neurons can be easily built. The main drawback
of this approach is the long latency period to convert the switching signals to
binary ones (needed when a given result must be properly stored). Other works
are based on an optoelectronic implementation [26, 27, 28], also dependent on
a sequential architecture and normally applied to time-series forecasting and
speech recognition. Those designs present an impressive processing speed due
to their photonic nature, nevertheless the full experimental setting may present
a considerable power dissipation. Recently, a fully-parallel photonic recurrent
neural network has been implemented using an optoelectronic technology for
ultra-fast signal processing [29]. In this work, up to 2025 diffractively coupled
photonic nodes is implemented in a large-scale recurrent neural network. The
model provide a good performance in terms of computational efficiency.

Therefore, most research in RC circuit implementation is based on the
sequentializing the process, thus limiting the processing speed. All the above
mentioned implementations are compared in the tables with the proposed
model in terms of accuracy, power and processing speed (when this information
is available in the references).

3 Methodology

3.1 Notation

We first define some common notation[30, 31, 32] followed in this work. In
particular, we use bold capital letters (e.g. X) and bold lowercase letters (e.g.
x) to denote matrices and vectors respectively. We employ non-bold letters
(e.g. x) to represent scalars, and Greek letters (e.g. β) to represent parameters.

Efficient parallel implementation of reservoir computing systems 5

All vectors are assumed to be in column form. Finally, the hat symbol is used
to denote approximations performed by the machine learning system (e.g. ŷ
is an approximation of y).

3.2 Echo-State Networks principles

ESN differs from previous RNN techniques in that conventional RNNs tune
all the synaptic weights between neurons to perform specific tasks whereas in
ESN most weights are randomly chosen and kept fixed (see Fig.1a). Only the
connections from the fixed RNN (termed the reservoir) to a non-recurrent out-
put layer (the readout) are modified by learning. This strategic design avoids
the need for complex back-propagation of the errors over the dynamic part of
the network reducing the training to a classical linear regression problem.

The architecture of a reservoir computing system consists of a total of N
internal processing nodes (the neurons) each one providing a given value xi(k),
where i ∈ {1, 2, .., N} is the neuron index, k represents the evolution during
time (k ∈ {1, 2, ..., L}) and L is the total number of samples taken from the
reservoir. Therefore, the time evolution of internal nodes of the reservoir is
described by a matrix with L rows and N columns X (the design matrix).
The state of the network at a given time k is defined by the kth row of the
design matrix and the time evolution of the ith neural output is stored in the
ith column. The output response of the reservoir is computed in two phases:
First, the current reservoir state [x(k)] is updated according to a nonlinear
function of the weighted sum of the neuron inputs [M external time-dependent

inputs u(k) = (u1(k), u2(k), ..., uM (k))
T

], and N internal ones coming from
the reservoir’s neurons evaluated in the previous time step, following the next
expression:

x(k) = f [Winu(k) +Wx(k − 1)] (1)

where f is a non-linear function (called the activation function f : RN → RN)
while Win and W are two N ×M and N ×N weight matrices respectively.
In a second phase, a total of Q outputs [ŷ(k) = (ŷ1(k), ŷ2(k), ..., ŷQ(k))

T
] are

obtained as a linear combination of the reservoir states:

ŷ(k) = Woutx(k) (2)

where Wout is a Q×N weight matrix that is obtained using a linear regression
with respect the expected outputs [y(k) = (y1(k), y2(k), ..., yQ(k))

T
].

3.3 Training methodologies

Defining Y as the feature matrix of L×Q to be approximated by the network
(composed of L row vectors of Q elements y(k)), we have that Wout may be
estimated using the Moore-Penrose pseudo-inverse:

W T
out =

(
XTX

)−1
XTY (3)

6 M. L. Alomar et al.

In the reservoir computing scheme, matrices Win and W are taken fixed
while Wout is conveniently trained using expression 3 or other similar linear
fitting. If some columns of the design matrix X are linearly dependent, the
maximum possible number of elements of the weight matrix are set to zero to
obtain a basic solution, and only the independent columns are considered. To
remove the dependent columns of matrix X, the rank-revealing QR decom-
position is used. Therefore, the design matrix is factorized X = QR, where
Q is the orthogonal matrix and R an upper triangular matrix. The weight
coefficients associated to the X dependent columns are equated to zero. For
this special case, the nonzero widths are calculated as:

W T
out (ξ) = R̂−1Q̂TY (4)

where R̂ and Q̂ are reduced versions of R and Q only considering the non-zero
columns of Q and removing the rows and columns of R that are associated
to the dependent columns of X. Parameter ξ corresponds to a selection that
only considers the independent components [33, 34]. Therefore, if r is the rank
of matrix X, then R̂ is a r× r square matrix and Q̂ is a L× r matrix. A new
set of descriptors that are linearly independent can therefore be obtained as
X̂ = X(ξ) = Q̂R̂.

More accurate linear regression models can be used as the Generalized
Least Squares (GLS). Defining Ω as the conditional variance of the error
term given X (Ω ≡ Cov[ε|X]), a more accurate expression for Wout can be
derived by minimizing the squared Mahalanobis length of the residual vector
e ≡ Y −WoutX.

Wout = arg min
W′

{
(y −W′X)TΩ−1(y −W′X)

}
(5)

The estimator therefore has the explicit expression of:

W T
out = (XTΩ−1X)−1XTΩ−1Y (6)

This method is useful when having heteroscedasticity and autocorrelation
in the error values e. Theoretical and empirical discussion on differences be-
tween GLS and the Ordinary Least Square (OLS) methods can be found in
[35].

3.4 Low cost hardware implementation of Echo-State Networks

The nonlinear activation function used in (1) is usually selected to be the hy-
perbolic tangent function. The number of neurons employed in ESNs is usually
high (typically between 50 and 1000, although some applications require much
larger networks to achieve the desired accuracy [19]), which makes particularly
challenging the hardware implementation of these systems if parallelism has
to be maintained. Given the large number of products to be implemented due
to the high number of synapses, multipliers expend a significant portion of the
integrated circuit resources if we want to use a parallel scheme. We propose

Efficient parallel implementation of reservoir computing systems 7

to avoid the use of the synapses’ multipliers by limiting the possible weights
to integer powers of two and sums of powers of two so that shift registers
and adders can be employed instead of multipliers. This technique has been
widely used in other fields such as the digital filter design [36]. For an stan-
dard ANN implementation that use back-propagation as learning algorithm,
the constraint on the weights is not desirable since it leads to lower network
performance [37]. Nonetheless, we show that for reservoir networks with fixed
connections, the proposed approach only implies a minor accuracy loss. Nev-
ertheless, for the estimation of the output [ŷ(k)] from expression (2) we use
the dedicated embedded multipliers integrated in the FPGA device. The over-
all area impact of this computation inside the FPGA is relatively low since
the logic elements needed to implement the neural network are not used and
the number of multipliers at the output layer is significantly lower than the
synapses’ multipliers (that would limit the maximum neural fan-in). Regarding
the network topology, it has been shown that a deterministic reservoir with
simple cyclic architecture (SCR, see Fig.1b) presents a similar performance
compared to the classical random one. The SCR architecture minimizes the
number of connections [38] and optimize the packing efficiency. In Fig.2 we
show in detail the scheme of the SCR network implemented. For simplicity,
the connections between internal units have the same weight r whereas the
inputs are connected to the reservoir with a weight that is positive (| v |) or
negative (−|v |) with the same probability and with the same absolute value.
We define the vector ε = (ε1, ε2, . . . , εN) in which each component is randomly
selected between two possible choices (−1 and +1) with equal probabilities.
Then, the weight connection between the input (u(t)) and the ith node of the
reservoir is εi ·v (see Fig.2).

For the estimation of network configuration parameters r and v, we first
adjust numerically to find the optimum weight configuration. Fig.3a illustrates
a general circuit design for a two-input sigmoidal neuron necessary to build the
cyclic reservoir of Fig.2. The fixed-point two’s complement notation is assumed
for all signals so that both positive and negative values can be represented. The
first neuron’s input [u(t)] refers to the external input signal (to be processed
by the network) and the second one [xi−1(t− 1)] to the state of a neighboring
neuron evaluated at the previous time step. A resolution of n bits is considered
for the input and of m bits for the weights (v and r). The multiplier’s output
is truncated to n bits taking the most significant of the result, but a higher or
lower resolution could be employed depending on the desired accuracy.

The general scheme of Fig.3a can be simplified to that of Fig.3b when the
weights are limited to a few discrete values. In this case, the full multipliers are
substituted by shift-and-add blocks. Such ”multiplier-less” approach enable
great hardware saving at the cost of constraining the possible values of the
connection weights. The shift-and-add block is depicted in Fig.3c. Basically,
it performs a multiplication of the input signal [u(t)] by the corresponding
weight (v) with a pair of shift registers and an adder. Some additional circuitry
is included to perform the negation of the shifted values in case it is necessary.
A multiplexer is employed to provide either the number that directly results

8 M. L. Alomar et al.

x1

u(t) ŷ(t)

x2

x3

xN

r

r

r

ε1 |v |

ε2 |v |

ε3 |v |

εN |v |

Fig. 2 The implemented cyclic Echo State Network scheme for the analysis of one-
dimensional signals

from the shift register or its corresponding negative value depending on a
selection signal. A decoder configures the shift registers (with the number of
required shifts, sh1 and sh2) and controls the activation of the negations (neg1
and neg2) as a function of the configuration vector (ε). By way of example,
a single right shift of the input (sh1 = 1) performs a multiplication by 0.5
while two shifts (sh2 = 2) are equal to a factor of 0.25. The direct addition
(with neg1 = neg2 = 0, indicating that no negation of the shifted values
is necessary) of these two shifted magnitudes results in a weight v = 0.75.
The weight value v = 0.875 can be implemented by selecting no shifts and
no negation for the first shift register (sh1 = 0, neg1 = 0) and three shifts
with a negated output for the second one (sh2 = 3, neg2 = 1) so that the
input signal u(t) is weighted by the factor v = 1 − 0.125 = 0.875. A negative
factor, for instance v = −0.5, may be obtained through the negation of both
shifted magnitudes (neg1 = neg2 = 1), where each one is obtained with two
displacements (sh1 = sh2 = 2) so that v = −0.25+(−0.25) = −0.5. Therefore,
the possible weights are limited to:

ω = neg12−sh1 + neg22−sh2 (7)

In the case it is desired a generic design, the circuit of Fig.3c can be used.
For FPGA implementations in which the training of r and v are done off-
line and remain fixed in hardware, a fixed circuit design incorporating the
implementation of the exact shifts for each neuron input can be used, further
simplifying the hardware and increasing the processing speed.

A simple piece-wise linear approximation with three segments [11] is used
for the implementation of the activation function, due to its simple binary
implementation. More accurate designs (e.g., [12, 13]) could be employed to
improve the network’s performance at the cost of higher hardware require-
ments. It usually has a sigmoidal shape, however it may also take the form

Efficient parallel implementation of reservoir computing systems 9

Fig. 3 (a-c) Neuron design: (a) general circuit design of the neuron; (b) reduced implemen-
tation scheme when the weight resolution is limited to few bits (m = 4) and the multipliers
are replaced by simple shift-and-add blocks; (c) description of the shift-and-add block

of other nonlinear functions such as the step function or the piece-wise lin-
ear function. The Heaviside (or step) function represents the binary neuron,
which corresponds to the first generation of neurons proposed by McCulloch
and Pitts ([39]). In this case, the neuron can only give a digital output: it
sends a binary high value (“1”) if the sum of the weighted inputs surpasses

10 M. L. Alomar et al.

Fig. 4 Piece-wise function used as non-linear activation function.

the threshold level, and a low value (“0”) otherwise. On the other hand, the
neurons using a continuous function (instead of the threshold one) belong to
the second generation of neurons, which allows analog outputs. Networks of
neurons of this type are more powerful than the ones based on first generation
units (they can perform the same functions using fewer nodes). The neurons
of the second generation are also more biologically realistic and similar to the
spiking neurons than the first generation ones since they can model the spiking
frequency (firing rate). The second-generation activation functions are often
required to be continuous, derivable and bounded. The necessity for being
derivable comes from the fact that the most common learning algorithms for
training an ANN to perform a certain function need to compute the deriva-
tive of the transfer function [40]. For the special case of this work, in which
the training is performed at the output layer and any back-propagation al-
gorithm is implemented, a piece-wise linear function is able to provide very
good fitting results along with a compact hardware implementation. In Fig.4
we show the non-linear function used for each internal neuron of the reservoir.
The function is easily reproduced in hardware using a low gate count. As will
be shown in the results’ section when comparing with other works, the use of
a piece-wise linear function instead of a more sophisticated sigmoidal function
is not compromising the system accuracy.

3.5 Benchmark Tasks

In time-series prediction or forecasting the objective is to predict future values
based on previously observed ones. Thus, the input sequences are mapped

Efficient parallel implementation of reservoir computing systems 11

onto a real-valued output sequence that represents one-step or several-step
ahead predictions of the desired variable. That is, the value of the series at the
current time is introduced each time step as input to the system and the time-
series value corresponding to a given time horizon must be predicted. In this
work we test the proposed RC methodology with respect to three widely used
benchmarks in the RC literature that are the Mackey Glass [41] and Santa
Fe [42] time series prediction tasks along with the equalization of a nonlinear
channel [43]. The time series processing is divided in two steps:

– Part of the time-series is used for off-line training using a R script. The
optimum v and r values are selected along with the output layer weights
(Wout). Then, the network is automatically generated using a hardware
description language code (VHDL).

– The rest of the time-series is digitized to 16bits two’s complement that is
transferred to the on-chip RAM memory of the FPGA for its processing.

The performance of the time-series forecasting task is evaluated using the nor-
malized mean square error (NMSE) and the Root Mean Square Error (RMSE):

NMSE =

∑L′

i=1

(
yi − ŷi

)2∑L′

i=1

(
yi − ȳ

)2 (8)

where y =
(
y(1), y(2), .., y(L′)

)
is the time series to be predicted (target),

ŷ =
(
ŷ(1), ŷ(2), .., ŷ(L′)

)
is the predicted value provided by the output layer

of the reservoir following equation (2), and ȳ is the mean value of y. Parameter
L′ is the number of samples in the test set. The RMSE is estimated as:

RMSE =

√∑L′

i=1

(
yi(t)− ŷi(t)

)2
L′

(9)

Other error estimation also used in the context of this work is the Mean
Absolute Error (MAE), defined as:

MAE =
1

L′

L′∑
i=1

|yi(t)− ŷi(t)| (10)

Finally, the quality for the equalization process is measured as the fraction
of symbols incorrectly classified with respect the total number of symbols
(symbol error rate, SER):

SER =
Number of misclassified values

Total number of values
(11)

12 M. L. Alomar et al.

3.5.1 The Mackey-Glass chaotic time series prediction task

The first benchmark used in this work is the time series prediction obtained
from the chaotic Mackey-Glass system. Defining the delayed signal as utD ≡
u(t− tD), the Mackey-Glass oscillator is defined by the following delay differ-
ential equation [41]:

du0
dt

=
βuτ

1 + upτ
− bu0 (12)

where the typical values β = 0.2, b = 0.1, p = 10 and τ = 17 have been selected
in this work. In particular, we use a time series with 10.000 points obtained
from u(t) with a sampling of 3 time steps. The time series is normalized with
zero mean, while the 60% of the time series is used for training and the re-
maining 40% for testing. The goal for the processing task is to predict the next
sample in the chaotic time trace before it has been injected into the reservoir
computer (for one-step ahead prediction). To evaluate the performance of the
network, we use the NMSE defined in (8).

3.5.2 The Santa Fe prediction task

The Santa Fe laser time-series prediction task is a widely used benchmark
in the RC literature [38]. The task consists in forecasting an experimental
recording of the output power of a far-infrared laser operating in the chaotic
regime, that is usually evaluated for one-step ahead predictions. A fragment
of such time-series can be observed in Fig.5.

In this work, we employ a total of 4.000 samples of the original laser data-
set, the first 75% for training and the remaining 25% for testing. The goal for
the Santa-Fe task is to predict the next sample in the chaotic time trace before
it has been injected into the reservoir computer (one-step ahead prediction).
The performance of this task is evaluated using the normalized mean square
error (NMSE) (8).

3.5.3 Nonlinear channel equalization

As a third task, we evaluate the performance of the system for the equalization
of a wireless communication channel. Communication systems are aimed at ef-
ficiently sending information from a transmitter to a receiver using an available
channel. This requires a processing of the received data as the channel is al-
ways responsible for distorting to some degree the transmitted signals [44].
The nature of the modifications suffered by the data sent depends on the par-
ticular features of the channel model, which can be either linear or nonlinear.
In the case of satellite and mobile-phone communications, the sender’s power
amplifier must work in the high-gain region, close to the saturation point, in
order to ensure a low power. This fact adds important nonlinear distortions in
the communication channel, which may be compensated either at the trans-
mitter side with pre-distortion or at the receiver with equalization. Here, we
focus on the digital compensation of the nonlinear channel at the receiver side.

Efficient parallel implementation of reservoir computing systems 13

Fig. 5 The Santa Fe laser time-series presents different increasing oscillations and abrupt
amplitude changes that make it optimum for testing different prediction methodologies

Fig. 6 Schematic diagram of a wireless communication system with a channel equalizer

To sum up, the problem of channel equalization consists of designing a device
(the equalizer) that is present in the receiver and is intended to cancel the dis-
tortions introduced by the physical environment used for transmission, thus
enabling the correct recovery of the original information [45].

The schematic of a communication system using a channel equalizer is illus-
trated in Fig.6. The transmitter communicates the symbol sequence d(t) as an
analog envelope signal modulated on a high-frequency carrier signal. Then, it
is received and demodulated into the analog signal s(t), which is a corrupted
version of d(t). The main sources of corruption are the linear superposition
of adjacent symbols (q(t), inter-symbol interference), nonlinear distortion in-
duced by operating the sender’s power amplifier in the high-gain region, and
noise (ν(t), thermal or due to interfering signals). The corrupted signal s(t) is
then passed through the equalizer with the purpose of recovering the transmit-
ted sequence d(t) or its delayed version d(t − τ), where τ represents here the
propagation delay associated with the physical channel. The equalized signal
ŷ(t) is finally converted back into a symbol sequence (d̂(t− τ)). The function
performed by the equalizer is adapted during the training stage so that the
reservoir output ŷ(t) can restore s(t) to d(t − τ) as closely as possible. Using
the training data (s(t) as input and d(t− τ) as desired output), the equalizer
parameters (weights) are adjusted so as to minimize the error e(t), defined as
the difference between the target output d(t − τ) and the equalization out-
put ŷ(t): e(t) ≡ d(t − τ) − ŷ(t). Once the training has been completed, the

14 M. L. Alomar et al.

equalizer weights are fixed and used to estimate the transmitted sequence.
Linear filters have been widely used as equalizers due to their simplicity and
mathematical tractability [46, 47]. However, their performance is not satisfac-
tory for highly nonlinear and dispersive channels. Channel equalizers based
on more complex approaches, such as polynomial filters (using Volterra series
expansions, [48, 49, 50]) and artificial neural networks (ANN) [51, 52, 53],
were developed showing a higher performance than the linear channel equaliz-
ers. Among ANN models, echo state networks (ESNs) represent an attractive
equalization solution since they are both nonlinear and recurrent, which makes
possible to meet the memory and mapping requirements of this particular task
with the advantage of not posing complex optimization problems. The ESN
approach has been proposed and investigated for the nonlinear channel equal-
ization task using channel models of diverse complexity [38, 45, 54, 55]. The
results presented in [55] show that the ESN approach is able to reach the same
performance as a state-of-the-art Volterra equalizer while presenting similar
complexity. Here, we propose and analyze the use of a digital hardware imple-
mentation of the ESN to perform the equalization of a wireless communication
channel. A low-cost hardware implementation of the channel equalizer is of
great interest in wireless communications given the limited available power in
mobile phone devices and aboard satellites. To create the data-set, we have
taken the channel model of a nonlinear wireless transmission system from [56].
This model only considers real inputs. A more realistic extension making use
of complex symbols can be found in [57]. The input to the channel is an inde-
pendent and identically distributed random sequence d(t) with values selected
from {−3,−1, 1, 3}. Then, d(t) values are used to form a sequence q(t) through
a linear filter as follows:

q(t) = 0.08d(t+ 2)− 0.12d(t+ 1) + d(t) + 0.18d(t− 1)

− 0.1d(t− 2) + 0.09d(t− 3)− 0.05d(t− 4)

+ 0.04d(t− 5) + 0.03d(t− 6) + 0.01d(t− 7)

(13)

Finally, a noisy nonlinear transformation is applied to generate s(t):

s(t) = q(t) + 0.036q(t)2 − 0.011q(t)3 + ν(t) (14)

where ν(t) is an independent and identically distributed Gaussian noise with
zero mean. The equalization task consists in getting the output y(t) = d(t−2)
when the corrupted signal s(t) is presented at the network input. The equalized
signal ŷ(t) needs to be finally converted back into a 4-symbol sequence. This
is done by equidistant thresholding. That is to say, the symbol +3 is chosen if
ŷ(t) > 2, +1 if 2 ≥ ŷ(t) > 0, etc. Therefore, the equalization task is actually a
classification problem where deviations of the estimated output with respect
to the target signal are acceptable as long as the values are kept within the
correct classification boundaries. As in the previous tests, first the reservoir
is trained off-line with a training set of 6.000 points. Once the network is
trained, a VHDL file is generated to test the network. A test set of 4.000
points is digitized to 16bits two’s complement that is inserted in the on-chip
RAM memory of the FPGA for its processing.

Efficient parallel implementation of reservoir computing systems 15

4 Results

The proposed methodology is synthesized using echo state networks with cyclic
topology (SCR) (Fig.1b), encoded using VHDL on an ALTERA Cyclone IV
FPGA. The VHDL code used is composed of three parts: RAM memory (con-
taining the input to be processed), the reservoir (constructed using the pro-
grammable logic elements of the FPGA), and the output layer (using the dedi-
cated multipliers of the FPGA). We compare the performance of the proposed
model with respect to different widely used benchmark tasks and comparing
with some previously published works. Regarding the area impact of the pro-
posed methodology, it represents an 86% of area reduction if compared with
the standard digital realization. In Fig.7 we show the number of logic ele-
ments used by the proposed methodology in comparison with a conventional
digital solution when implemented in an ALTERA FPGA device (Cyclone IV
EP4CE115F297C7N).

The training of the system is performed following the standard procedure
for ESNs [17], which consists in a linear regression of the desired output on
the reservoir states. A convenient numerical model of the hardware reservoir is
employed for extracting the output weights Wout during the training phase.
These weights are used in the training set to determine the optimum internal
configuration parameters (values of r and v). This is done scanning off-line for
all the possible network configurations. Then, the hardware is set up with the
obtained optimum configuration parameters and weight matrix (Wout) and
the final error is evaluated using the test set. Fig.8 shows how the network
performance (NMSE) varies with v and r for the special case of the Santa-
Fe time-series forecasting problem). This graph is explored to establish the
optimum internal setup. It can be observed (Fig.8) that the discrete weight
values allowed by the ”multiplier-less” approach (constrained in the range
from 0 to 1 with steps of 0.125 and highlighted with asterisks in Fig.8) ensure
errors that are in close proximity to the best result provided by the numerical
simulations. Once the optimum parameters are obtained (r = 0.875 and v = 1
in the case of Fig.8), the FPGA is configured and the test set is stored into
an internal RAM memory of the FPGA. The memory is used to provide each
new input value to the reservoir every time step (each N clock cycles) and the
resulting outputs (individual neuron states) are processed by the FPGA, thus
generating the output ŷ. This computation is performed following equation
(2) in a total of N clock cycles so that the processing speed of the proposed
design is f/N , where f is the clock frequency fixed to 50MHz. This output
is extracted from the FPGA with a logic analyzer and used to calculate the
system’s performance as the error between the estimated and targeted values.
The main drawback of the proposed approach is that the internal configuration
is restricted to some discrete values and that the optimum internal weights
cannot be selected. Nevertheless, this limitation has not impacted too much the
accuracy that is maintained within competitive values (as will be shown in the
results’ section). To illustrate all this process, in Fig.9 we represent graphically

16 M. L. Alomar et al.

Fig. 7 Spent hardware resources of the Cyclone IV (EP4CE115F297C7N) FPGA for dif-
ferent sizes of the reservoir (N), using a conventional solution and the proposed design

Fig. 8 Performance (NMSE) of the RC implementation (with N = 200 neurons) in the
Santa-Fe time-series prediction task as a function of the weight parameters r and v. The
surface is obtained numerically while the highlighted points represent the possible discrete
values to which the multiplier-less approach is limited

the data processing flowchart realized for the experimental validation of the
model.

4.1 The Mackey-Glass oscillator

We first consider the measurements obtained using the popular example of
time series prediction with the chaotic Mackey-Glass system. We process a

Efficient parallel implementation of reservoir computing systems 17

Fix parameters v and r

Training set

SW Model

Wout and NMSE

(Feedback loop since NMSE is minimum)

Optimum v, r and Wout

HW ModelTest set (RAM) Final NMSE

Minimize NMSE

Fig. 9 Flowchart followed for testing the network model

discrete time series composed of 10.000 points obtained from the continuous
system (12) with sampling time of 3 time steps. The time series is divided
into two sets, where the first 6.000 points are used for training and the next
4.000 for testing. The network parameters that optimize the output fitting are
(r = 0.875 and v = 1) . In Fig.10 we show the first 150 iterations of the test
set (measurements ŷ(t) are represented with a solid line and u(t) with circles)
using OLS. As can be appreciated, a good approximation is obtained between
the model and the desired output.

We estimate the residuals e = y − ŷ of the fitting for the training set to
evaluate the possible heteroscedasticity of data. In Fig. (11) we observe that
residuals present an apparent homogeneity in their distribution. We compared
also the linear fitting obtained by using an Ordinary Least Squares (OLS) ap-
proximation using expression (3) and also Feasible Generalized Least Squares
(FGLS) using expression (6). For the calculation of the residual’s covariance
matrix Ω we used the estimations proposed in [58, 59]. In Table 1 we com-
pare the fitting (the Mean Absolute Error) of the two methodologies, showing
that FGLS is unable to provide a better fitting when compared to OLS. This

18 M. L. Alomar et al.

Table 1 Performance results of the Mackey Glass chaotic oscillator for OLS and FGLS
fitting methods (N=300)

Method Training error
(MAE)

Test error
(MAE)

OLS 0.00186 0.00198
FGLS[58] 0.0019 0.00206
FGLS[59] 0.0019 0.00204

Fig. 10 FPGA measurements showing the first 150 iterations of the test set (ŷ(t) with a
solid line and u(t) with circles)

fact can be due to the intrinsic symmetry of the reservoir. Therefore, in this
work, the estimation of the output layer weights Wout is performed using the
Ordinary Least Squares method for simplicity.

The error results obtained for the full test set are provided in Table 2,
where we compare the measurements taken with the proposed ESN model
and the previously-published works [26, 29] that implements different networks
with a different number of neurons and using an experimental optoelectronic
setting. As can be appreciated, the proposed network model is able to provide
a performance that is similar to those experimental implementations. The
comparison is done through the estimation of the NMSE and the RMSE.

Efficient parallel implementation of reservoir computing systems 19

Fig. 11 Variation of residual (e) with time step for the Mackey-Glass oscillator. An apparent
homoscedasticity of signals can be appreciated

Table 2 Performance results of the Mackey Glass chaotic oscillator for the proposed design
and previously published models based on Echo State Networks (ESN) and an Extreme
Learning Machine (ELM)

Technology Method Ref. N NMSE log10(RMSE) Type

Optoelectronic ELM [26] 800 - ∼ −1.95 Hard.
Optoelectronic ESN [26] ∼ 615 - ∼ −1.24 Hard.
Optoelectronic RNN [29] 900 0.013 - Hard.
FPGA ESN This work 300 0.010 −1.74 Hard.

4.2 The Santa Fe prediction task

The performance of the proposed system is also tested for the Santa Fe time-
series prediction task [42]. Networks with different sizes (for 48 and 200 neu-
rons) are implemented and analyzed using the proposed ”multiplier-less” ap-
proach (Fig.3b) with a precision of 16 bits (n = 16). For this task we employ
4.000 samples of the original laser data-set, the first 3.000 for training and the
remaining 1.000 for testing.

Fig.12 illustrates the experimental measurements obtained through the
proposed design when using 48 and 200 neurons. As can be observed, the
fitting of the measurements taken in the FPGA are improved when increasing
N . The performance of the network as N increases can be observed visually
in Fig.13, where the expected values are plotted vs. the FPGA measurements.

20 M. L. Alomar et al.

Fig. 12 Fragment of the Santa Fe time-series test set: original values and one-step ahead
predictions performed by the proposed reservoir implementation with N = 48 and N = 200
neurons. As can be appreciated, the network is able to adapt to the abrupt changes of the
input

As can be appreciated from the measurements, the fitness improves as N
increases.

In Table 3 we show the performance of the proposed model measured in
terms of the NMSE, speed (in points predicted per second) and power dissipa-
tion for the processing of the Santa-Fe time series prediction task. Comparison
with previously published models is also included in the table. We distinguish
between theoretical values of NMSE obtained from high-precision numerical
calculations (simulation) and NMSE values obtained from experimental set-
tings (Hard.). These two values can differ significantly due to the intrinsic
complexity of experimental settings that may present both system and quan-
tization noise. This is evidenced in reference [28], where the expected NMSE
provided by software is considerably lower than the measured one. We also
show the results of different studies that are purely numerical as the work in
[38] showing the expected performance of Simple Cycle Reservoir designs, or
the paper in [43] where a semiconductor ring laser with optical feedback (SRL)
is numerically simulated. We also provide in the table the power-delay product
(PDP) achieved by the experimental settings (a classical figure of merit of the
overall hardware performance). As can be appreciated the proposed design is

Efficient parallel implementation of reservoir computing systems 21

Fig. 13 Expected vs. estimated values provided by the FPGA for the 1000 points of the
test set. A considerable better fitness is obtained for N = 200

Table 3 Performance results of the Santa Fe experiments for the proposed design and some
previously published models

Technology Ref. N NMSE NMSE speed Power PDP
(Hard.) (Simulation) (pps) (W) (W · µs)

Optoelectronic [43] 200 - 0.02 - - -
Optoelectronic [27] 388 0.106 - 1.3 · 107 150 11.5
Optoelectronic [28] 400 - 0.021 - - -
Numerical [38] 200 - 0.008 - - -
Numerical [38] 50 - 0.018 - - -
Analog Circuit [25] 400 0.031 - - - -
FPGA [24] 50 0.131 - 1142 0.083 72.6
FPGA [23](16b) 50 0.075 - 763 < 1.5 1966
FPGA [23](12b) 50 0.12 - 12207 < 1.5 123
FPGA This work 200 0.079 0.0766 2.5 · 105 < 1.5 6
FPGA This work 48 0.148 0.144 106 < 1.5 1.5

able to provide the lowest PDP that can be understood as the mean energy
needed per operation [27, 28].

4.3 Channel equalization

The nonlinear channel equalization task tries to recover an input symbol se-
quence from the signal received at the output of a standardized nonlinear
noisy multipath RF (Radio-Frequency) channel. The performance is evalu-
ated in terms of symbol error rate (SER), which is the fraction of misclassified
symbols 11. Our results were obtained using a sequence of 6.000 training sym-
bols and 4.000 test symbols with N = 27. To illustrate the network operation,

22 M. L. Alomar et al.

Fig. 14 Results of the channel equalization problem, the expected signal d(t) is represented
with circles and the received signal s(t) is shown with a dashed line. The corrected signal
provided by the reservoir ŷ(t) is represented with a solid line

Table 4 Results of the equalizer experiments for the proposed design and some previously
published models

Technology Ref. N SER SER SER SER Type
(16dB) (20dB) (24dB) (28dB)

(Untreated) 0.167 0.131 0.114 0.098
FPGA This work 27 0.0345 0.0095 0.007 0.0042 Hard.
Optoelectronic [26] 246 0.05 0.013 0.007 0.0025 Hard.
Optoelectronic [60] 50 0.025 0.006 0.0007 0.00055 Sim.

in Fig.14 we show a total of 50 points taken from the test set. The expected
signal d(t) is represented with circles, the received signal s(t) is shown with
a dashed line and the measurements provided by the FPGA ŷ(t) are shown
with a black solid line. Some s(t) points would be misclassified (as points 27
or 30) and the corrected signal provided by the reservoir (ŷ(t), solid line) is
able to provide the correct result. The overall results of the test set are shown
in Table 4, where we estimate the Symbol Error Rate (SER) for four differ-
ent signal to noise ratio values (SNR = {16dB, 20dB, 24dB, 28dB}). As can
be appreciated, the proposed design is able to decrease considerably the SER
with respect the untreated data. These SER values are also very similar with
other hardware solutions based on the use of optoelectronic devices [26]. As
done in Table 3, we compare the obtained results with both measurements
taken from experimental settings (denoted as Hard. in the table) and purely
numerical studies (simulation). Note that the results provided in [60] do not
take into account the intrinsic problems (as system or quantization noise) that
is present in experimental settings as in [26].

Efficient parallel implementation of reservoir computing systems 23

5 Conclusions

In this work, we have presented a fully parallel and efficient digital imple-
mentation of reservoir computing systems. The hardware realization is based
on the observation that the reservoir connection weights can be limited to a
few discrete values without compromising the system’s performance. This can
be conveniently exploited setting the synapses’ weights to powers of two and
sums of powers of two, which allow performing the multiplications with shift-
and-add blocks, thus consuming minimal area. The validity of the resulting
implementation has been demonstrated for different benchmarks: the Santa Fe
and Mackey Glass oscillator time-series prediction tasks, and the equalization
of a nonlinear channel. Performance comparisons with ten previous works that
use the network scheme of Reservoir Computing systems are shown. The com-
parisons show that the proposed model represent a considerable improvement
in terms of speed and power dissipation while is able to provide a similar accu-
racy than previous models. The proposed design enables the implementation
of large reservoir networks using few hardware resources extending the range
of efficient implementations of neural circuits in digital hardware [1, 2, 15, 16].
Considering the accuracy of the model, processing speed, along with the to-
tal power consumption, the proposed implementation represent an advantage
with respect other RC circuit implementations (analog, digital and optoelec-
tronic) due in part to the use of a fully parallel-connected neural network.
To the best of our knowledge, the proposed design provide the lowest perfor-
mance in terms of power-delay metrics so this technique is the most qualified
to support portable real-time signal processing applications such as image and
video sequence classification, which often require timely responses with a low
power cost [19]. At the same time the proposed approach can be useful to per-
form specialized systems implementing computational intelligence techniques
and requiring a low power consumption. Other potential applications to which
this approach is more suitable could be speech recognition [10], robotics [18],
wireless sensor networks [61], predictive controllers [7] and the classification of
medical signals [9] among others. To sum up, it has been shown that the use
of low-resolution weights for the reservoir has little effect on the system’s per-
formance while it allows a considerable reduction of the hardware and power
resources. This observation makes possible a very compact implementation of
massive reservoir networks with parallel processing capabilities.

References

1. Baptista D, Abreu S, Freitas F, Vasconcelos R, Morgado-Dias F (2013) A
survey of software and hardware use in artificial neural networks. Neural
Computing and Applications 23(3-4):591–599

2. Misra J, Saha I (2010) Artificial neural networks in hardware: A survey of
two decades of progress. Neurocomputing 74(1-3):239–255

24 M. L. Alomar et al.

3. Baptista FD, Morgado-Dias F (2017) Automatic general-purpose neural
hardware generator. Neural Computing and Applications 28(1):25–36

4. Amir MF, Kim D, Kung J, Lie D, Yalamanchili S, Mukhopadhyay S (2017)
NeuroSensor: A 3D image sensor with integrated neural accelerator. In:
2016 SOI-3D-Subthreshold Microelectronics Technology Unified Confer-
ence, S3S 2016

5. Krizhevsky A, Sutskever I, Geoffrey E H (2012) ImageNet Classification
with Deep Convolutional Neural Networks. Advances in Neural Informa-
tion Processing Systems 25 (NIPS2012) pp 1–9

6. Morro A, Canals V, Oliver A, Alomar ML, Galan-Prado F, Ballester
PJ, Rossello JL (2017) A Stochastic Spiking Neural Network for Virtual
Screening

7. Li H, Zhang D, Foo SY (2006) A stochastic digital implementation of a
neural network controller for small wind turbine systems. IEEE Transac-
tions on Power Electronics 21(5):1502–1507

8. Chauhan A, Semwal S, Chawhan R (2013) Artificial neural network-based
forest fire detection system using wireless sensor network. 2013 Annual
IEEE India Conference (INDICON) pp 1–6

9. Raghunathan S, Gupta SK, Ward MP, Worth RM, Roy K, Irazoqui PP
(2009) The design and hardware implementation of a low-power real-time
seizure detection algorithm. Journal of Neural Engineering 6(5):056,005

10. Lee M, Hwang K, Park J, Choi S, Shin S, Sung W (2016) FPGA-based
low-power speech recognition with recurrent neural networks. In: IEEE
Workshop on Signal Processing Systems, SiPS: Design and Implementa-
tion, pp 230–235

11. Basterretxea K, Tarela JM, del Campo I (2002) Digital design of sigmoid
approximator for artificial neural networks. Electronics Letters 38(1):35–
37

12. Baptista D, Morgado-Dias F (2013) Low-resource hardware implementa-
tion of the hyperbolic tangent for artificial neural networks. Neural Com-
puting and Applications 23(3-4):601–607

13. Nascimento I, Jardim R, Morgado-Dias F (2013) A new solution to the
hyperbolic tangent implementation in hardware: Polynomial modeling
of the fractional exponential part. Neural Computing and Applications
23(2):363–369

14. Carrasco-Robles M, Serrano L (2009) Accurate differential tanh(nx) im-
plementation. International Journal of Circuit Theory and Applications
37(5):613–629

15. Nedjah N, De MacEdo Mourelle L (2007) Reconfigurable hardware for
neural networks: Binary versus stochastic. Neural Computing and Appli-
cations 16(3):249–255

16. Lotrič U, Bulić P (2012) Applicability of approximate multipliers in hard-
ware neural networks. Neurocomputing 96:57–65

17. Lukoševičius M, Jaeger H, Schrauwen B (2012) Reservoir Computing
Trends. KI - Künstliche Intelligenz 26(4):365–371

Efficient parallel implementation of reservoir computing systems 25

18. Antonelo EA, Schrauwen B (2015) On Learning Navigation Behaviors
for Small Mobile Robots with Reservoir Computing Architectures. IEEE
Transactions on Neural Networks and Learning Systems 26(4):763–780

19. Jalalvand A, Wallendael GV, Walle RVD (2015) Real-Time Reservoir
Computing Network-Based Systems for Detection Tasks on Visual Con-
tents. In: Proceedings - 7th International Conference on Computational
Intelligence, Communication Systems and Networks, CICSyN 2015, pp
146–151

20. Bacciu D, Barsocchi P, Chessa S, Gallicchio C, Micheli A (2014) An exper-
imental characterization of reservoir computing in ambient assisted living
applications. Neural Computing and Applications 24(6):1451–1464

21. Lin X, Yang Z, Song Y (2009) Short-term stock price prediction based
on echo state networks. Expert Systems with Applications 36(3 PART
2):7313–7317

22. Buteneers P, Verstraeten D, Nieuwenhuyse BV, Stroobandt D, Raedt R,
Vonck K, Boon P, Schrauwen B (2013) Real-time detection of epileptic
seizures in animal models using reservoir computing. Epilepsy Research
103(2-3):124–134

23. Alomar ML, Canals V, Perez-Mora N, Mart́ınez-Moll V, Rosselló JL (2016)
FPGA-based stochastic echo state networks for time-series forecasting.
Computational Intelligence and Neuroscience 2016

24. Alomar ML, Soriano MC, Escalona-Morán M, Canals V, Fischer I, Mirasso
CR, Rosselló JL (2015) Digital Implementation of a Single Dynamical
Node Reservoir Computer. IEEE Transactions on Circuits and Systems
II: Express Briefs 62(10):977–981

25. Soriano MC, Ort́ın S, Keuninckx L, Appeltant L, Danckaert J, Pesquera
L, van der Sande G (2015) Delay-Based Reservoir Computing: Noise Ef-
fects in a Combined Analog and Digital Implementation. IEEE Trans-
actions on Neural Networks and Learning Systems 26(2):388–393, DOI
10.1109/TNNLS.2014.2311855

26. Ort́ın S, Soriano MC, Pesquera L, Brunner D, San-Mart́ın D, Fischer I, Mi-
rasso CR, Gutiérrez JM (2015) A Unified Framework for Reservoir Com-
puting and Extreme Learning Machines based on a Single Time-delayed
Neuron. Scientific Reports 5

27. Brunner D, Soriano MC, Mirasso CR, Fischer I (2013) Parallel photonic
information processing at gigabyte per second data rates using transient
states. Nature Communications 4

28. Hicke K, Escalona-Morán M, Brunner D, Soriano MC, Fischer I, Mirasso
CR (2013) Information Processing Using Transient Dynamics of Semi-
conductor Lasers Subject to Delayed Feedback. IEEE Journal of Selected
Topics in Quantum Electronics 19(4):1501,610–1501,610

29. Bueno J, Maktoobi S, Froehly L, Fischer I, Jacquot M, Larger L, Brunner
D (2018) Reinforcement learning in a large-scale photonic recurrent neural
network. Optica 5(6):756–760

30. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity:
Recognizing complex activities from sensor data. In: IJCAI International

26 M. L. Alomar et al.

Joint Conference on Artificial Intelligence, vol 2015-January, pp 1617–1623
31. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune Teller: Pre-

dicting Your Career Path. Proceedings of the 30th Conference on Artificial
Intelligence (AAAI 2016) (1):201–207

32. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-
based activity recognition. Neurocomputing 181:108–115

33. Draper NR, Smith H (1998) Applied Regression Analysis. Technometrics
47(3):706

34. Chatterjee S, Hadi AS (1986) Influential Observations, High Leverage
Points, and Outliers in Linear Regression. Statistical Science 1(3):379–393

35. Boukouvalas A, Cornford D, Stehĺık M (2014) Optimal design for corre-
lated processes with input-dependent noise. Computational Statistics and
Data Analysis 71:1088–1102

36. Lim YC, Liu B (1988) Design of Cascade Form FIR Filters with Discrete
Valued Coefficients. IEEE Transactions on Acoustics, Speech, and Signal
Processing 36(11):1735–1739

37. Marchesi M, Orlandi G, Piazza F, Uncini A (1993) Fast Neural Networks
Without Multipliers. IEEE Transactions on Neural Networks 4(1):53–62

38. Rodan A, Tiño P (2011) Minimum complexity echo state network. IEEE
Transactions on Neural Networks 22(1):131–144

39. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent
in nervous activity. The Bulletin of Mathematical Biophysics 5(4):115–133

40. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations
by back-propagating errors. Nature 323(6088):533–536

41. Mackey MC, Glass L (1977) Oscillation and chaos in physiological control
systems. Science (New York, NY) 197(4300):287–9

42. Weigend AS, Gershenfeld NA (1993) Results of the time series prediction
competition at the Santa Fe Institute. In: IEEE International Conference
on Neural Networks - Conference Proceedings, vol 1993-Janua, pp 1786–
1793

43. Modeste Nguimdo R, Verschaffelt G, Danckaert J, Van Der Sande G
(2015) Simultaneous computation of two independent tasks using reser-
voir computing based on a single photonic nonlinear node with optical
feedback. IEEE Transactions on Neural Networks and Learning Systems
26(12):3301–3307

44. Benedetto S, Biglieri E (1999) Principles of Digital Transmission: With
Wireless Applications. Kluwer Academic Publishers, Norwell, MA, USA

45. Boccato L, Lopes A, Attux R, Von Zuben FJ (2011) An echo state network
architecture based on volterra filtering and PCA with application to the
channel equalization problem. In: Proceedings of the International Joint
Conference on Neural Networks, pp 580–587

46. Lucky RW (1965) Automatic Equalization for Digital Communication.
Bell System Technical Journal 44(4):547–588

47. Gersho A, Lim TL (1981) Adaptive Cancellation of Intersymbol Interfer-
ence for Data Transmission. Bell System Technical Journal 60(9):1997–
2021

Efficient parallel implementation of reservoir computing systems 27

48. Karam G, Sari H (1989) Analysis of Predistortion, Equalization, and ISI
Cancellation Techniques in Digital Radio Systems with Nonlinear Trans-
mit Amplifiers. IEEE Transactions on Communications 37(12):1245–1253

49. Mathews VJ (1991) Adaptive Polynomial Filters. IEEE Signal Processing
Magazine 8(3):10–26

50. Malone J, Wickert MA (2011) Practical Volterra equalizers for wideband
satellite communications with TWTA nonlinearities. In: 2011 Digital Sig-
nal Processing and Signal Processing Education Meeting, DSP/SPE 2011
- Proceedings, pp 48–53

51. Chen S, Gibson GJ, Cowan CFN (1990) Adaptive channel equalisation
using a polynomial-perceptron structure. I Communications, Speech and
Vision 137(5):257–264

52. Patra JC, Pal RN, Baliarsingh R, Panda G (1999) Nonlinear channel
equalization for QAM signal constellation using artificial neural networks.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics 29(2):262–271

53. Patra JC, Meher PK, Chakraborty G (2009) Nonlinear channel equaliza-
tion for wireless communication systems using Legendre neural networks.
Signal Processing 89(11):2251–2262

54. Jaeger H, Haas H (2004) Harnessing Nonlinearity: Predicting Chaotic
Systems and Saving Energy in Wireless Communication. Science
304(5667):78–80

55. Bauduin M, Smerieri A, Massar S, Horlin F (2015) Equalization of the
non-linear satellite communication channel with an Echo state network.
In: IEEE Vehicular Technology Conference, vol 2015

56. Mathews VJ, Lee J (1994) Adaptive algorithms for bilinear filtering. In:
Proceedings of SPIE - The International Society for Optical Engineering,
vol 2296, pp 317–327

57. Seth S, Ozturk MC, Principe JC (2007) Signal processing with echo state
networks in the complex domain. In: Machine Learning for Signal Process-
ing 17 - Proceedings of the 2007 IEEE Signal Processing Society Workshop,
MLSP, pp 408–412

58. Cribari-Neto F (2004) Asymptotic inference under heteroskedasticity of
unknown form. Computational Statistics and Data Analysis 45(2):215–
233

59. White H (1980) A heteroskedasticity-consistent covariance matrix and a
direct test for heteroskedasticity. Econometrica 48:817–838

60. Vinckier Q, Duport F, Smerieri A, Haelterman M, Massar S (2016) Au-
tonomous bio-inspired photonic processor based on reservoir computing
paradigm. In: 2016 IEEE Photonics Society Summer Topical Meeting Se-
ries, SUM 2016, pp 183–184

61. Mathews E, Poigné A (2008) An Echo State Network based pedestrian
counting system using wireless sensor networks. In: 2008 International
Workshop on Intelligent Solutions in Embedded Systems (WISES 2008),
pp 1–14

