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Abstract. The new generation of knowledge-based applications requires a large amount of computing power with minimal
energy consumption. This has aroused the interest in the non-conventional computing methods capable to implement complex
functions in a very simple way and which in turn are inherently noise tolerant, as is the case of probabilistic or stochastic
computing architectures. This work analyzes the robustness against noise of the Extended Stochastic Logic (ESL) encoding,
a recently proposed probabilistic computing methodology. Furthermore, the capabilities of the ESL encoding to implement
complex computational functions in the field of statistical pattern recognition, as is the case of a Bayesian classifier, are presented.
The ESL noise-tolerance is analyzed and tested in a FPGA by injecting a wide range of noise levels. The noise-tolerance results
are compared with the archived by conventional circuits, with and without fault-tolerant capabilities. The ESL outperforms the
conventional Triple Modular Redundancy (TMR) solutions as is show in the experimental results.

Keywords: Probabilistic computing, probabilistic logic, pattern recognition, field programmable gate arrays, robustness, error
correction

1. Introduction

Nowadays, a new generation of knowledge-based
applications [21] is taking importance in the techno-
logical world. Those applications use Computational
Intelligence [53] methodologies to solve complex real-
world problems in which traditional approaches are
not feasible or ineffective; and generally its applica-
tion falls in one of these three categories: pattern recog-
nition [1,24], data mining [3,24,57] and digital syn-
thesis [4,9]. All of these applications need to process
large amounts of information, thus require of a large
amount of computing power with a minimal consump-
tion. All this has pushed the semiconductor industries
to enhance chips performance [33] through the CMOS
technology down-scaling and aggressive design prac-
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tices (such as dynamic logic styles) those have resulted
a current technology more noise-sensitive [19]. Unfor-
tunately, the chip power consumption has also been
continuously increasing [28]. A common technique
for reducing the energy consumption is to decrease
the power supply voltage, which implies a loss of
noise robustness and therefore a circuit reliability de-
crease [44]. Therefore, decreasing the CMOS feature
sizes causes the devices to be less reliable [32]. Other
noise-related effects are the ground bounce node ca-
pacitance, node critical charge reduction, higher ther-
mal noise, process variations, soft errors and noise
margin diminution. Earlier, these effects have had little
impact on the integrated circuits performance, but in
the nanometric technologies era this relevance has in-
creased significantly [23,37]. In particular, soft errors
refer to non-permanent errors that can severely limit
the reliability of CMOS circuits. They are produced by
the charge injection due to a particle hit, from an alpha
particle [31] or a neutron [56]. Traditionally, soft er-
rors [27] were related with memories but with the tech-
nology downscaling has become as frequent in combi-
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national circuits as in un-protected SRAM cells [52].
Numerous design methodologies have been developed
to overcome the noise immunity loss as can be the
SRAM [37] and combinational cells [59] hardening,
the on-chip error checking and correction circuits [41],
space redundancy and/or time redundancy. Space re-
dundancy mainly includes Dual Modular Redundancy
and Triple Modular Redundancy (TMR), this is the
most common scheme to perform Single Event Upset
(SEU) and electromagnetic waves hardening [18].

The current situation of an unreliable nanometric
technology coupled with the raising of the knowledge-
based applications demanding major computing ca-
pacity [7,39,42,49] have increased the interest in non-
conventional computing methods capable to imple-
ment complex functions in a very simple way [34,45]
and which in turn are inherently noise tolerant [10,15].
These methods are a complement to conventional par-
allel and distributed computing [2,5,6,8,25,26,48,54].
This is the case of probabilistic or Stochastic Comput-
ing architectures [11] which apply probabilistic laws to
digital logic systems, thus performing pseudo-analog
operations with stochastic pulse frames (stochastic sig-
nals) [14]. The main research lines on this uncon-
ventional technique are focused on some knowledge-
based fields, such as: digital filters [50], image pro-
cessing [40,58], Low Density Parity Check decoders
used in wireless communications [20], neural net-
works [16,46,47], pattern recognition/classifiers [17,
29], data mining [35] and fault tolerant computing ar-
chitectures [30,43,51].

This work aims to study theoretically and experi-
mentally the noise tolerance of Extended Stochastic
Logic (ESL) encoding, as well as analyzing its capabil-
ities to implement complex computational functions in
the field of statistical pattern recognition. The ESL en-
coding scheme and main blocks have been applied suc-
cessfully by authors to implement highly reliable [15]
probabilistic neural networks [16] using very few hard-
ware resources.

ESL noise-tolerance capabilities are theoretical an-
alyzed and discussed its robustness for different noise
sources. The design of the main probabilistic rules is
proposed and analyzed, such as addition, subtraction,
multiplication, and conditional probability. To check
the real statistical pattern recognition capabilities of
the proposal, a Bayesian classifier circuit is presented
and tested in a FPGA. To test the capacities of ba-
sic ESL blocks against noise (mainly electromagnetic
noise), different rates of noise are injected (0 to 100%)
to the FPGA inputs. In order to discuss the goodness

of the obtained ESL results in front of the conventional
systems, a conventional and a TMR 8 × 8-bit multi-
plier have been implement and tested under the same
noise conditions. Finally, the ESL noise-tolerance de-
pendency as function of the evaluation period (related
with the computational capacity) is analyzed.

The rest of the paper is organized as follows: Sec-
tion 2 briefly introduces ESL encoding and architec-
ture, the ESL noise-tolerance is analyzed, the main sta-
tistical rules design is proposed, and finally the imple-
mentation of a Bayesian classifier is presented. Sec-
tion 3 shows the obtained experimental noise-tolerance
results by each basic ESL block and architecture, and
compared with the conventional and TMR architec-
tures. Finally, the conclusions are presented in Sec-
tion 4.

2. Materials and methods

This section briefly presents ESL coding and proba-
bilistic architecture. The ESL noise tolerance is mathe-
matically analyzed. Then, the ESL blocks designs that
implement the main statistical rules are presented. A
Bayesian classifier is finally shown.

2.1. Extended stochastic logic

The ESL is a probabilistic computing encoding that
represents the information by means of the ratio x∗ =
p∗/q∗ of the switching activity of two bipolar encoded
stochastic signals [14], each one defined in the range
[−1, 1]. The ratio x∗ follows the Eq. (1), now being
able to represent any real number (−∞, +∞) related
with the switching activities, p∗ and q∗, of the P and
Q (digital N-bit) values (as shown in Fig. 1a).{

p ∈ [0,+1]

q ∈ [0,+1]
→

{
p∗ ∈ [−1, 1]

q∗ ∈ [−1, 1]

⇒

{
0 6 P 6 2N − 1

0 6 Q 6 2N − 1{
p∗ = 2 · p− 1

q∗ = 2 · q − 1
⇒ x∗ =

p∗

q∗
→ E (x∗)

= E

(
p∗

q∗

)
=

(
2 · P − 1 ·

(
2N−1

))
/
(
2N−1

)
(2 ·Q− 1 · (2N−1))/(2N−1)

=
2 · P −

(
2N − 1

)
2 ·Q− (2N − 1)

=
P ∗

Q∗
,∀x∗ ∈ (−∞,+∞)

(1)
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Fig. 1. (a) ESL encoding example. (b) ESL conversion error. (c) Probabilistic computing architecture. (d) Binary to pulse conversion. (e) Noise
injection circuit. (f) Pulse to binary conversion.

On the bottom side of Fig. 1a we illustrate how to
obtain an average value of the ratio x∗ = 2/3 using
a pair of pulsed signals with switching probabilities
p = 2/8 and q = 1/8. On the other hand, the ESL
coding conversion error is dependent on the P ∗ andQ∗

encoded probability values according to:

X∗ =
P ∗

Q∗
→ Error(X∗) =

∣∣∣∣ 1

Q∗

∣∣∣∣ · Error(P ∗)

+

∣∣∣∣ P ∗Q∗2
∣∣∣∣ · Error(Q∗) (2)

It should be noted that the use of small values of
Q∗ are necessary to represent large X∗ values, which
inevitably involves large error values independently of
the conversion error associated with the p∗ and q∗ sig-
nals, as can be shown in Fig. 1b. This is one of the
main drawbacks of the encoding. Therefore, P ∗ and
Q∗ must be set as small as possible in order to limit the
magnitude of the error.

2.1.1. Probabilistic computing architecture
Probabilistic computing systems are composed at

least by three basic stages, illustrated in Fig. 1c. The
first stage converts digital values X∗ to their respec-
tive pulsed signals x∗, to enable done any probabilis-
tic computation. We call these blocks Binary-to-Pulse
converter (B2P). With the ESL encoding as happens
with traditional stochastic logic, values X∗ must be
coded as the quotient of P ∗ and Q∗ binary numbers,

and converted to stochastic signals (p∗, q∗) using a cou-
ple of B2P blocks [16].

The second stage implements the probabilistic com-
puting circuit to carry out a certain task. The configu-
ration and structure of this circuit is related to the cod-
ification being used (unipolar, bipolar or ESL) [14],
which defines the representation range of the system.

Finally, the third stage is responsible to convert the
pulsed signals resulting of the probabilistic comput-
ing systems into their equivalent binary valuesX∗. We
named these blocks Pulse-to-Binary converter (P2B).
To convert an ESL x∗ probability again into a digital
value, it is necessary to combine two P2B blocks [16]
to obtain their equivalent binary values (P ∗, Q∗). Stor-
ing both binary signals, the quotient X∗ is obtained.

2.1.2. Noise-tolerance analysis
Conventional digital systems are extremely vulner-

able to signal variations outside the specified voltage
ranges for high and low logic values. In fact, a whole
digital system can be halt as a result of noise. Noise
can be induced by different ways, but electromagnetic
waves are one of the most important noise sources,
which may generate circuit malfunction. Generally,
these have a greater impact and larger area of influence
than soft errors induced by charge injection due to a
particle hit, known as SEU. This is due to the fact that
electromagnetic waves affect all the devices area while
soft errors just affect at a single point. In addition, elec-
tromagnetic waves have much larger energy, and there-
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fore they are more likely to cause multi-bit errors since
a particle burst is generally unlikely to take place [36].

The ESL encoding not only makes feasible the im-
plementation of probabilistic operations that exceed
the representation range of the stochastic bipolar cod-
ing, but also expands the inherent noise-tolerance ca-
pacity of stochastic systems [11,43]. The mathematical
development of the noise injection (with a noise rate
r) in an ESL signal (coded as the ratio x∗ = p∗/q∗) is
presented in Eq. (3).

P
Noise_injection−−−−−−−−→{
P ′ = P · (1− r) + r · (2N − 1− P )

= P − 2 · P · r + r · (2N − 1)

Q
Noise_injection−−−−−−−−→{
Q′ = Q · (1− r) + r · (2N − 1−Q)

= Q− 2 ·Q · r + r · (2N − 1)

E′(x∗) = E′
(
p∗

q∗

)
=

2 · P ′ − (2N − 1)

2 ·Q′ − (2N − 1)

=
2 · (P−2 · P · r + r · (2N−1))−(2N−1)

2 · (Q−2 ·Q · r + r · (2N−1))− (2N−1)

=
2 · P − (2N − 1)

2 ·Q− (2N − 1)
· 1− 2 · r

1− 2 · r

=
2 · P − (2N − 1)

2 ·Q− (2N − 1)
= E(x∗) (3)

When a noise rate r is injected into the input signals
p and q, the associated binary values P and Q (aver-
age number of high values in the pulsed signal stream)
are modified. But the encoded ratio obtained with the
modified binary values P ′ and Q′ remains unchanged
since the factor (1− 2 · r) appearing in both numerator
and denominator can be cancelled. Nevertheless, this
common factor approaches to zero for values of 100%
of noise injection (related with a noise rate r = 0.5).
A noise rate of r = 0.5 imply a 50% of probability
of any bit being in a high or low value, which implies
no information present in the digital signal. This cor-
responds to signal values of p∗ = q∗ = 0 and there-
fore an indeterminate value of the ESL quotient. In this
case, the modified binary values P ′ and Q′ become
smaller, and the conversion error is increased due to
the digital quantization of the information.

In addition, it can be assumed that an ESL signal is
affected by a low intensity noise at a single point will
continue to operate correctly, since a stochastic signal

can be essentially considered as a signal generated by
noise [43]. This is the case, of a SEU hit at sea level,
which present a frequency of the order 10–12 upset/(bit
· h) for memories [38]. For higher rates of noise (due
to electromagnetic waves, SEUs at high altitudes or in
space), we postulate that there are no reasons to be-
lieve that one of the two stochastic signals of an ESL
magnitude will be exposed in average to different noise
rates. However, we do not assume that both signals are
affected by the noise in the same time instants. Then,
Eq. (3) demonstrates that an ESL signal (coded as the
ratio x∗ = p∗/q∗) remains unchanged when the two
switching signals are affected by the same noise level.

2.2. ESL statistical rules blocks

This sub-section presents the ESL design of the
basic statistical rules and basic operations necessary
to implement any general purpose statistical pattern
recognition system and finally discusses the implemen-
tation of a Bayesian classifier.

2.2.1. Rules of addition and subtraction
The statistic rule of addition applies to the following

situation. Assume the joint probability (X and Y ) is
given by:

P (X ∪ Y ) = P (X) + P (Y )− P (X ∩ Y ) (4)

Invoking the fact that P (X ∩ Y ) = P (X) · P (Y |X),
the addition rule can also be expressed as:

P (X ∪ Y ) = P (X) +P (Y )−P (X) ·P (Y |X)

(5)

The ESL addition/subtraction of probabilistic sig-
nals is performed using the design shown in Fig. 3a.
The numerator of the sum of p∗/q∗ and r∗/s∗ (sig-
nal t∗) is assessed using two XNOR gates (cross mul-
tiplication between numerator and denominator of the
two numbers) and a multiplexer (that provide the mean
value of the two products).

Therefore, the result in the numerator is t∗ = (p∗ −
s∗+r∗−q∗)/2. The denominator u∗ is obtained using
a three-input XNOR gate that multiplies the signals q∗,
s∗ and a signal with a switching activity sig∗ = 0.5.
Note that the difference between the addition using the
traditional Stochastic Computing and the novel ESL
methodology is that the former yields the mean value
of two signals while the latter provides the real sum.
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Fig. 2. (a) ESL adder/subtractor. (b) ESL statistical rule of addition. (c) ESL multiplier/rule of multiplication. (d) ESL divider. (e) ESL nonfunc-
tional square circuit. (f) ESL functional square circuit.

out =
t∗

u∗
= x+ y =

(p⊕ s) · c+ (r ⊕ q) · c(
q ⊕ s⊕ sig

)
=−→ out∗ =

out_t∗+1
2

out_u∗+1
2

= . . .

j∗ = p⊕ s = p∗ · s∗

k∗ = r ⊕ q = r∗ · q∗

l∗ = q ⊕ s = q∗ · s∗

c∗ = 0

sig∗ = +0.5

. . .

=
j∗+1

2 · c
∗+1
2 +k∗+1

2 −
k∗+1

2 · c
∗+1
2(

1− l∗+1
2

)
· sig∗+1

2 + l∗+1
2 ·

(
1− sig∗+1

2

)
= . . . =

1
2 · (c

∗ · (j∗ − k∗) + j∗ + k∗ + 2)
1
2 · (1− l∗ · sig∗)

=
0.5 · j∗ + 0.5 · k∗

0.5 · l∗
=

=
j∗ + k∗

l∗
=
p∗ · s∗ + r∗ · q∗

q∗ · s∗
(6)

The subtraction is performed in the same way as the
addition but adding a NOT gate between the XNOR
and the multiplexer (red dashed inverter in Fig. 2a),
which changes the sign of one of the two values.

out = NOT (p) = p = (1− p)→

{
out∗ = 2 · out− 1

p∗ = 2 · p− 1
⇒ out =

out∗ + 1

2

= 1− p∗ + 1

2
⇒ out∗ = 2− 2− p∗ = −p (7)

On the other hand, the ESL subtraction block is fun-
damental to implement the statistical rule of subtrac-
tion, which establishes that the probability of event X
occurring is equal to one minus the probability of that
event not occurring.

P (X) = 1− P (X ′) (8)

To perform the addition of two statistical rules
Eq. (5), we need three ESL blocks: an adder, a subtrac-
tor and a multiplier, as shown in Fig. 2b.

Previously, this block has been shown to be essential
to implement probabilistic neural networks [16], as it
allows to perform the sum of the presynaptic contribu-
tions to evaluate the membrane potential ui.

ui =
n−1∑
j=0

wij · xj ←

{
wi0 = −bi
x0 = +1

(9)

2.2.2. Rule of multiplication and conditional
probability

The Rule of multiplication evaluates the probabil-
ity of the intersection between two events; that is, the
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Fig. 3. (a) ESL Bayes rule design for two categories. (b) Stochastic pseudo-normal PDF generator.

probability of two events (event X and event Y ) both
occurring at the same time.

P (X ∩ Y ) ={
P (X) · P (Y ), X & Y independent
P (X) · P (Y |X) = P (Y ) · P (X|Y ), other

(10)

In addition, substituting the known values of P (X) and
P (X∩Y ) into Eq. (10) is possible obtain the P (Y |X),
since the conditional probability can be expressed as.

P (Y |X) =
P (X ∩ Y )

P (X)
(11)

These operations can be implemented with the ESL en-
coding using a pair of XNOR gates to multiply or di-
vide two probability values X∗ = p∗/q∗ and Y ∗ =
r∗/s∗ (see Fig. 2c for multiplication and Fig. 2d for di-
vision). The multiplication is performed by the direct
product between both numerators and denominators as

shown in Eq. (12). The same circuit can be used to per-
form the division doing the cross multiplication.

This basic function have been used to perform the
product wij · xj of a j-th input xj by the i-th neuron
connection weight wij in a probabilistic neuron [16].

out =
out_u
out_v

= x⊕ y =
(p⊕ r)
(q ⊕ s)

=
p · r+p · r
q · s+q · s

−−−−−−→
Var_change

out∗ =
1+out_u∗

2
1+out_v∗

2

=

1− p∗+1
2 − r∗+1

2 + 2 · p
∗+1
2 · r

∗+1
2

1− q∗+1
2 − s∗+1

2 + 2 · q∗+1
2 · s∗+1

2

=
1 + out_u∗

1 + out_v∗
=

1 + p∗ · r∗

1 + q∗ · s∗

→ out_u∗

out_v∗
=
p∗ · r∗

q∗ · s∗
= x∗ · y∗ (12)

2.2.3. Exponentiation
The ESL exponentiation block is used to multiply

a probability P (X) by itself several times. To illus-
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trate the exponentiation operation will be show the im-
plementation of the square function f(X∗) = (p∗ ·
p∗)/(q∗ · q∗). A crucial requirement of stochastic com-
puting is that the pulsed signals to be operated must be
un-correlated [17].

out =
out_u
out_v

= x(t)⊕ x (t) =

(
p(t)⊕ p (t)

)
(
q(t)⊕ q (t)

)
=
p(t) · p(t) + p(t) · p(t)
q(t) · q(t) + q(t) · q (t)

=
p(t) + p(t)

q(t) + q(t)

=
1

1
= 1 (13)

The importance of the temporal un-correlation [12]
is shown in Fig. 2(e) with an example where a signal
is operated with itself, using an XNOR gate. Since the
signals at the inputs of the pair of XNOR gates (p(t)
or q(t)) are correlated (in this case they are indeed the
same), the result is not the squared input but it is a con-
stant value equal to ‘1’ as shown in Eq. (13). A solution
to eliminate the correlation between different signals is
the use of an n-bit shift register to delay one of the sig-
nals with respect to the other as shown in Fig. 2f. This
procedure makes possible to evaluate the product be-
tween the signals p(t) or q(t) and their corresponding
time-delayed values p(t − n) and q(t − n), as shown
below.

out =
out_u
out_v

= x(t)⊕ x(t− n) =(
p(t)⊕ p(t− n)

)
(
q(t)⊕ q(t− n)

) =

=
p(t) · p(t− n) + p(t) · p(t− n)

q(t) · q(t− n) + q(t) · q(t− n)

=−−−−−−→
Var_change

out∗ =
p∗p∗

q∗ · q∗

= x∗ · x∗ = x∗2 (14)

For the experimental implementation of the expo-
nentiation block a 16-bit shift register has been used
n = 16 as delay element.

2.2.4. Bayesian classifier implementation
In order to evaluate the ESL capabilities in the field

of statistical pattern recognition a two-class Bayesian

classifier is implemented. It’s based on a likelihood
function P (x|wi) for each class wi with respect to
an input/measurement x. Each class are obtained by
supervised learning over a set of J patterns Ω =
{w1, . . . , wJ}, such that the properties of the set of
classes are.wi ∩ wj = φ

J
∪
i=1

wi = Ω
(15)

The solution that minimizes the decision error [55]
about a given classwi for a measurement x is estimated
by the a posteriori probability function P (wi|x) using
the Bayes formula.

P (wi|x) =
P (wi) · P (x|wi)
J∑

i=1

P (wi) · P (x|wi)

, i = 1, . . . , J

(16)

Showing how for a measurement x changes the deci-
sion based on the a priori probability of each class.

P (wi) = πj , i = 1, . . . , J (17)

The ESL encoding allows to overcome one of the ma-
jor drawbacks found in the previous stochastic deploy-
ments [17] when evaluating the a posteriori probabil-
ity of the different categories, related to the inability to
normalize each class wi likelihood function P (x|wi)
to the unity.∫

x

P (x|wi) = 1 (18)

To evaluate the benefits of the ESL encoding in the
statistical pattern recognition field, we implement the
Bayes rule for two categories (A and B) as shown in
Fig. 3a.

P (x|wi) =
1

σi
√

2π
· e
− (x−µi)

2

2σ2
i , x ∈ <

Where,{
µi : mean of the probability distribution
σ2
i : variance of the probability distribution

(19)

The likelihood function of each class Eq. (19) is im-
plemented by a pair of previously developed stochas-
tic pseudo-normal Probability Density Function (PDF)
generator blocks [43] (Fig. 3b), whose output is mul-
tiplied by an ESL normalization factor in order to set
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Table 1
ESL Bayesian classifier hardware resources

Total logic elements (LE): 665/18,752 (3.5%)
Total combinational functions: 384/18,752 (2%)
Dedicated logic registers: 578/18,752 (3.1%)
Total memory bits: 0/239,616 (0%)
Embedded multiplier 9-bit element: 0/52 (0%)
FPGA main clock (MHz): 27
Number of clock cycles to obtain an output: 131,072
Bayes classifier evaluation period (ms): 4.855

Fig. 4. ESL Bayesian classifier experimental results.

its area to one. Subsequently, we evaluate the prod-
uct P (x|wi) · P (wi) for each category wi through a
pair of ESL multipliers. Then, the multipliers output
is connected to the inputs of an ESL adder block to
evaluate the normalization factor P (x) = ΣP (x|wi) ·
P (wi). Finally, before dividing each category contri-
bution P (x|wi) · P (wi) by P (x), we temporally un-
correlate both t signals with a pair of two-bit shift reg-
isters. Then, at the ESL dividers output the a posteriori
probability of each category wi is evaluated.

The two-category ESL Bayesian classifier circuit
has been synthetized on an Altera FPGA with the fol-
lowing parameters: µA = 0.25, µB = 0.688, σA =
σB = 0.009 and P (wA) = P (wB) = 0.5. The re-
sults are presented in Fig. 4, where we compare the the-
oretical expected behavior (dashed lines) and the cir-
cuit measurements (symbols). We find a misclassifica-
tion between the experimental results and the theory of
only 4.61% in the worst case P (WA|x). As can be ap-
preciated, the circuit properly evaluates the a posteri-
ori probability for both categories since the probabili-
ties cross at the point where the conditional probabili-
ties are equal. It is worth highlighting that the required
number of logic gates for the implementation is very

small, as shown in Table 1; which allows to replicate
the circuit many times and to take advantage of hard-
ware parallelism.

Although the results are good, one would expect
them to be even better. This is due to the use of ad-
ditional hardware associated with the probabilistic ar-
chitecture (P2B and B2P blocks); that uses a consid-
erable fraction of hardware resources especially when
the stochastic circuit is so small.

On the other hand, the evaluation period for this cir-
cuit seems a priori very large according to the current
computation time. However, probabilistic systems un-
like conventional ones do not have a fixed period of
computation; that depends on the conversion error that
can be assumed for a given application. For example, in
massive probabilistic pattern recognition applications
usually uses only 4-bit (only 16 clock cycles) to evalu-
ate the results [35].

Particularly, the proposed application intended to
check the ESL capabilities to implement pattern recog-
nition applications, and therefore the results should be
compared with a computer floating-point one. This is
the reason to use a slow architecture with a little con-
version error (16-bit) a faster with a higher conversion
error.

3. Experimental results and discussion

This section aims to study the experimental noise-
tolerance archived by each basic ESL block. The re-
sults are compared with respect to a conventional TMR
architecture.

In order to evaluate the noise-tolerance of the ESL
architecture, different noise levels are injected. This
procedure is repeated for the blocks configured with
different evaluation periods (2k clock cycles with k =
12, 16, 20 and 24-bit) determining the noise-tolerance
capabilities as a function of the architecture used.

The noise injection emulation will be done by intro-
ducing random changes to the inputs of the ESL blocks
(Fig. 1d), i.e. generating random bit flips in the p and
q signals who compose the ESL signal. For this pur-
pose a pair of B2P blocks will be incorporated with 16-
bit maximal-length LFSR as Random Number Gener-
ator [13], and different seeds. The setup ensures that
there is no correlation between the two signals, and
therefore emulates the fact that both signals are not af-
fected by exactly the same bit changes.

Each B2P block combined with a XOR gate is in
charge of flipping (0→ 1 or 1→ 0) one of the stochas-
tic signals composing the ESL magnitude with a given
noise rate, as shown in Fig. 1e.
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The dependency between computational perform-
ance (evaluation time) and noise-tolerance of the ESL
computational blocks will be analyzed for different
P2B blocks with 12, 16, 20 or 24-bit counters (Fig. 1f).

The experimental setup is composed by a low-range
FPGA (Cyclone II, EP2C10F484C7N) assembled on
the Altera Corp. Terasic DE1 educational board, a
USB-Blaster to program the FPGA, a USB-to-RS232
converter to interconnect the PC with the development
board, and a high end PC. The proposed ESL blocks
are coded in VHDL and synthesized with the Altera
Quartus II software suit (version 13.0SP1). In addi-
tion, an UART and a state machine on the FPGA to
communicate the board with the PC has been incor-
porated, which allows the automated data acquisition
with a MATLAB-based PC application.

3.1. ESL blocks noise-tolerance

Before presenting the noise-tolerance experimental
results for the different ESL blocks, it is necessary to
define the concept of noise rate and the mathematical
function used to estimate the ESL blocks output error.

The maximum allowable noise ratio (100% of noise
injection) of an ESL coded magnitude/probability is
defined as the probability value of noise injection caus-
ing the complete loss of information transmitted by the
pair of stochastic signals (p∗ and q∗). This situation
occurs when the number of ones in the stochastic sig-
nal sequences is equal to the number of zeros (proba-
bility of 50%), which corresponds to signal values of
p∗ = q∗ = 0 and an indeterminate value of the ESL
quotient. Therefore, the noise rate is given in the range
from 0% to 100%, which corresponds to a swap of the
probability rNoise between [0, 0.5], as shown below.

Noise_Rate[%] = 200 · rNoise,∀rNoise ∈ [0, 0.5]
(20)

On the other hand, the ESL block output error for
each injected noise rate will be calculated as the ratio
between the mean absolute error and the average of
the absolute value of the theoretical output (so that the
negative values of the function are properly taken into
account).

Error [%] =

1
u

u∑
i=1

|ESLout (noise%)− ESLout (theo.)|

1
u

u∑
i=1

|ESLout (theo.)|
· 100

(21)

Table 2
ESL probabilistic blocks output errors for different noise rates
(16-bit P2B)

ESL adder ESL multiplier ESL square
Noise Error σ Error σ Error σ

injection [%] [%] [%] [%]
0 1.960 0.017 2.058 0.124 2.935 0.025

10 2.423 0.022 2.241 0.124 3.493 0.043
20 2.738 0.022 2.484 0.125 4.114 0.057
30 2.696 0.027 2.656 0.125 5.186 0.076
40 3.688 0.032 2.993 0.127 6.290 0.092
50 3.839 0.032 4.604 0.133 8.715 0.139
60 5.008 0.048 4.372 0.130 13.163 0.208
70 8.081 0.065 6.035 0.141 22.618 0.406
80 9.306 0.089 7.857 0.156 66.406 1.784
90 22.784 0.253 15.517 0.246 100 –
95 50.206 0.520 33.189 0.970 100 –
97.5 100 – 100 – 100 –

100 100 – 100 – 100 –

This ratio is finally multiplied by a factor of 100 to
obtain the percentage of error as shown in Eq. (21),
where u is the number of measurements considered for
the error calculation.

3.1.1. Adder & subtractor
The experimental measurements of the ESL adder/

subtractor block were performed by adding two ESL
coded signals z∗ = y∗+x∗. The first one (y∗ = r∗/s∗)
was set to a constant value of 0.5 while the second one
(x∗ = p∗/q∗) was varied in the [−2, 2] range by steps
of 0.015. These measurements were repeated for dif-
ferent noise rates with 10% increments in the range [0,
100%]. Some additional steps were made in the range
of 90% to 100% to properly display the error in this
interval. 16-bit P2B blocks have been used to convert
the ESL pulsed output signals which corresponds to
an evaluation period of 216 FPGA global clock cycles
@50 MHz.

The block operation results obtained for different
noise ratio injection values (0%, 30%, 60% and 90%)
are shown in Fig. 5a, where a good agreement can be
observed between the block operation and theoretical
one. All signals present nearly the same behavior and
the error remains smaller than 5% until a noise injec-
tion rate of 60% is surpassed.

The complete set of error results of the ESL adder/
subtractor obtained according to Eq. (21) for the differ-
ent noise injection rates are presented in Table 2. The
standard deviation has been calculated for the abso-
lute error of the measurements (the deviation assessed
using the error expression in Eq. (21) does not bring
useful information due to the large values obtained for
small errors).
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Fig. 5. (a) ESL adder output for different noise ratios. (b) ESL adder noise tolerance vs. P2B bit number (c) ESL multiplier output for different
noise ratios. (d) ESL multiplier noise tolerance vs. P2B bit number. (e) ESL square output for different noise ratios. (f) ESL square noise tolerance
vs. P2B bit number.
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In addition, the noise-tolerance obtained by the ESL
adder/subtractor block for different evaluation periods
has been evaluated; configuring the P2B converters of
the ESL architecture with different times: 212, 216,
220 and 224 clock cycles. The experimental results ob-
tained for the different evaluation periods are shown
in Fig. 5b, which illustrates how the inherent noise-
tolerance of the ESL blocks can be adjusted with the
architecture evaluation period. The worst result is ob-
tained with the 12-bit counter and the best one with the
24-bit counter. The results using the 16, 20 and 24 bit
counters are similar up to a 50% noise injection rate. It
can be affirmed that noise-tolerance increases with the
evaluation period.

3.1.2. Multiplier & divider
The measurements of the ESL multiplier/divider

block were performed multiplying two ESL coded val-
ues z∗ = y∗ ·x∗. The first one (y∗ = r∗/s∗) was set to
a constant of 1.5 while the second one (x∗ = p∗/q∗)
was varied in the range [−2, 2] within 256 steps.

These measures were repeated for different noise
injection rates with 10% increments in the range [0,
100%]. Some additional steps were made in the range
from 90% to 100% to properly display the error in this
interval. The results obtained with a 16-bit P2B block
are shown in Fig. 5c. The experimental values are in
accordance with the expected theoretical ones. All sig-
nals present nearly the same behavior and the error re-
mains smaller than 5% until a noise injection rate of
60% is surpassed. The ESL multiplier set of error re-
sults is presented in Table 2.

The experimental results obtained for the different
evaluation periods are shown in Fig. 5d. As expected,
noise immunity increases with the evaluation period. It
can be observed that the errors obtained with the ESL
multiplier are significantly lower than those obtained
with the ESL adder. This is mainly due to the fact that
the ESL multiplier is made up of less logical elements
than the ESL adder, since each logic gate has associ-
ated some uncertainty or error that adds to the block’s
output.

3.1.3. Square
The ESL square block experimental measurements

were performed squaring an ESL value z∗ = (x∗)2,
which input was varied in the range [−2, 2] within 64
steps. In this case, the 16-bit B2P used to generate the
input signals was equipped with a 32-bit LFSR to avoid
problems of temporal correlation between the signal

Table 3
ESL architecture bandwidth in function of P2B number of bit

P2B number of bit
12-bit 16-bit 20-bit 24-bit

Period: 81.92 us 1.31 ms 20.97 ms 335.54 ms
Frequency: 12.21 kHz 762.93 Hz 47.68 Hz 2.98 Hz
# Averages: 0.063 1 16 256

Table 4
ESL noise-tolerance analysis as a function of P2B number of bits

Adder [%] Multiplier [%] Square [%]
a+ −0.92 −0.32 −0.80
b+ 39.40 14.82 36.81
c+ −320.54 −70.75 −335.50
r2+ 0.98 0.99 0.99

+Polynomial Fit Parameters: Noise tolerance [%] = a·n2+b·n+c,
n: P2B number of bits.

and the delayed signal. The results using a 16-bit P2B
block are depicted in Fig. 5e.

As in previous cases, there is a good agreement be-
tween experimental values obtained and the theoreti-
cally expected. However, a 5% error is reached by this
block with only a noise injection rate of the 30%. The
ESL square complete set of error results are presented
in Table 2. Additionally, the experimental results ob-
tained for several architectures and evaluation periods
are graphed in Fig. 5f. As expected, noise-tolerance in-
creases with the evaluation period. The errors obtained
for this block are significantly higher than those ob-
tained for the previous blocks (at any noise rate and
evaluation period).

3.2. ESL noise-tolerance dependence with
architecture evaluation period

This subsection analyzes and discusses the relation-
ship between the different ESL-block noise-tolerance
reached and the evaluation period of the probabilistic
computing architecture.

With this purpose, the maximum allowable noise
rate for two maximum output error percentages set as
5% and 10% will be analyzed. The limiting noise is
evaluated as a function of the number of bits of the P2B
converter used for the stochastic to binary conversion
(related to the evaluation period as shown in Table 3
using a system clock frequency of 50 MHz).

The obtained results are plotted in Fig. 6a (for a
maximum error of 5%) and in Fig. 6b (for a maximum
error of 10%). Notice how the noise immunity of the
ESL blocks increases as a second order polynomial of
number of bits of P2B converter used by stochastic ar-
chitecture. As is shown in Fig. 6a and b the behavior of
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Fig. 6. (a) Noise tolerance archived vs. P2B bit number with 5% error. (b) Noise tolerance archived vs. P2B bit number with 10% error.

the noise immunity is very similar for both cases. The
desired noise immunity levels are reached for all the
analyzed ESL blocks with the architectures equipped
with 16, 20 and 24-bit P2B modules. However, with
the architectures equipped with a 12-bit P2B, the 5%
maximum allowed error has been only reached by the
multiplier, while for the 10% maximum error has been
reached for all the blocks except the square function.

Meanwhile, Table 4 presents how the noise-tolerance
reached by each ESL block follows a second order
polynomial with the architecture P2B number of bits.

Finally, it is worth highlighting that for the 24-bit
P2B architecture all the analyzed ESL blocks reach a
noise robustness value higher than the 80% for a 5%
of maximum output error, and noise robustness higher
than the 90% for a 10% error.

3.3. ESL noise-tolerance capabilities discussion

This subsection aims to discuss the goodness of the
ESL noise-tolerance results in front of the conventional
circuits, with and without hardening. For this com-
parison, the ESL multiplier block has been chosen,
combined with a 16-bit probabilistic architecture. It
should be noted that the ESL multiplier is the simplest
circuit analyzed. Therefore, as a conventional equiva-
lent has been chosen an 8 × 8-bit combinational full-
multiplier [22] that outputs a 16-bit value. This resolu-
tion is equivalent to the proposed 16-bit ESL architec-
ture. To implement the conventional multiplier it has
been interconnected with 64 Full Adder (FA) circuits.

Starting from the full-multiplier module has been
developed a variant that incorporates space redun-

dancy hardening. Specifically, the block includes 192
TMR FA and 64 voter circuits. The TMR is the
most common scheme to perform SEU and electro-
magnetic waves hardening [22]. Both circuits have
been synthesized on a Terasic DE1 educational board
(Altera Corp.), equipped with an FPGA (Cyclone II,
EP2C10F484C7N). The FPGA resources and circuit
performance are presented in Table 5.

Finally, an additional circuit has been developed in
order to randomly change bits from the input bytes to
multiply. This is performed in a similar manner to the
one used in ESL blocks testing. The noise-tolerance
measurements have been performed in an automated
way, taking 1000 measurements for each noise rate
(256 k measurements), to subsequently evaluate the
related error percentage for this noise rate. The er-
ror percentages obtained for the three modules ver-
sus the noise rates are presented in Fig. 7. These re-
sults show clearly how ESL probabilistic architecture
is more noise-tolerant than the conventional solutions.
The ESL encoding archives a multiplier output error
of 10% for an 85% noise injection, while the conven-
tional multiplier and the TMR reaches the same error
for a noise injection of 0.4% and 2.7% respectively.

The hardware resources used are shown in Table 5
for the different implementations. The ESL consumes
more resources than the conventional multiplier, al-
though much less than the TMR.

For this estimation, the four B2P 16-bit modules and
two P2B 16-bit modules to convert ESL signals has
been considered. The ESL circuit presents the lower
delay and therefore a greater operation frequency, at
use less logic gates than the other two.
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Table 5
Multipliers FPGA hardware resources and performance

8 × 8
multiplier

8 × 8 TMR
multiplier

ESL
multiplier

Total logic elements
(LE):

160/18,752
(0.853%)

444/18,752
(2.368%)

210/18,752
(1.120%)

Total combinational
functions:

160/18,752
(0.853%)

444/18,752
(2.368%)

169/18,752
(0.901%)

Dedicated logic
registers:

0/18,752
(0%)

0/18,752
(0%)

148/18,752
(0.789%)

Total memory bits: 0/239,616
(0%)

0/239,616
(0%)

0/239,616
(0%)

Embedded multiplier
9-bit element:

0/52
(0%)

0/52
(0%)

0/52
(0%)

Worst propagation
delaya (ns):

23.451 36.095 9.756

Fmax (MHz): 21.321 13.988 51.251
Number of clock
cycles (@fmax) to
obtain a correct
circuit output:

1 1 65,536

a: Obtained with Altera TimeQuest Timing Analyzer. Slow-model
worst-case timing paths, 1.2 V, 85◦C.

Fig. 7. Multipliers errors percentages vs. noise rate injection.

The evaluation period for ESL is very large re-
lated to the computation time. However, probabilis-
tic systems unlike conventional ones do not have a
fixed period of computation that depends on the resolu-
tion needed for a given application. In general, knowl-
edge based applications implemented with probabilis-
tic computing uses a low number of bits [35] for the
conversion. This implies a minor noise-tolerance at the
conversion, as discussed in the previous section.

4. Conclusions

This work analyzed the noise-tolerance and the sta-
tistical pattern recognition capabilities of the ESL. The

ESL architecture demonstrated the ability to imple-
ment the main statistical rules and basic statistical clas-
sifiers, such as a two-class Bayesian classifier. The ex-
perimental results show that the proposed architecture
can be useful to implement complex statistical pattern
recognition applications.

The ESL has been shown to be an amazing noise-
tolerant architecture due to its inherent redundancy.
The use of two stochastic signals ratio to encode the
information, one to express the numerator and the sec-
ond for the denominators is the key to remove any pres-
ence of noise since it will be included in each signal in
the same proportion. The analyzed ESL blocks exhibit
an output error smaller to 10% for noise injections up
to 90%, with 24-bit architectures. The architecture al-
lows adjusting output noise-tolerance performance as
a function of the size of the P2B converters (related
to the evaluation period), as a second order polyno-
mial, establishing a relationship between the computa-
tional performance and the noise-tolerance. Finally, a
faithful comparison with conventional binary logic and
TMR architectures is presented. The results show that,
even that the total circuit area is not significantly in-
creased when using the ESL architecture with respect
the conventional binary logic (with a slight increase
of a 30% in resources in comparison with a 176% of
area increase for the TMR), its noise tolerance capa-
bilities outperforms the TMR results. This is clearly
shown in Section 3.2 where the output error obtained
with the TMR solution crosses the 10% when the in-
jected noise is higher than the 2.7% while the ESL ar-
chitecture needs a noise level of the 85% to provide the
same 10% of error. The ESL approach is a system-level
noise-tolerant architecture and not a silicon level one,
and therefore it can operate in any standard CMOS
technologies or FPGAs. This approach can be comple-
mented with other noise-hardening techniques, in or-
der to protect the P2B converters registers and the aux-
iliary conventional digital circuits.

The main drawback of the proposed architecture is
the low computational capacity when a high resolution
or high noise-tolerance digital outputs a needed (216

clock cycles for 16-bit P2B blocks needed to obtain
a result), with respect to the conventional and TMR
architectures.
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