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Summary

We consider the mixed convective flow at an axisymmetric stagnation point on a heated hori-
zontal boundary. The forced flow is moderated by a free-convective element whose origin is a
pressure gradient induced by temperature variations along the boundary. The main aim of the
investigation is to identify situations in which a steady flow is maintained.

1. Introduction

The concept of horizontal free convection was introduced by Stewartson (1) and Gill et al. (2) for
a flow over a heated horizontal semi-infinite plate due to an induced pressure gradient. Amin and
Riley (3) also demonstrated that on an infinite horizontal plane boundary, a varying wall temperature
would induce a pressure gradient. This was illustrated by a quadratic wall temperature, symmetric
about a stagnation line, which proved to be a line of attachment when the temperature increased
away from it, and a line of separation when the temperature increased towards it. No steady flow is
possible in the latter case. An extension of this work by the same authors (4) introduced the classical
two-dimensional stagnation point flow of either attachment or separation. They were apparently
able to find, in all cases, a steady flow for sufficiently large values of the temperature gradient at the
boundary. In this paper, we extend the earlier work both to axisymmetric flow and to asymptotically
large and small values of the Prandtl number.

Competitive free and forced convective flows have been studied by other authors. For the classical
free-convective flow past a vertical semi-infinite flat plate, Merkin (5) introduces a uniform free
stream. For the case in which buoyancy aids the motion, the velocity increases along the plate
but when buoyancy opposes the motion the flow eventually separates. By contrast, Daniels (6)
places a thermally insulated semi-infinite flat plate horizontally in a thermally stratified onset flow
that results in a horizontal pressure gradient. In certain circumstances, this can lead to a singular
breakdown of the solution of the boundary-layer equations at a finite distance from the leading edge
of the plate.

The present paper is organized as follows. In the next section, we introduce the boundary-layer
equations based upon scalings associated with a suitably defined large Grashof number. From these
equations, we can determine the pressure gradient that demonstrates the interplay between the
forced convective flow and the thermally induced pressure gradient. We restrict our attention to
the case of a surface temperature that decreases radially from the stagnation point. In the following
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288 J. ARRIETA-SANAGUSTÍN

section, we consider solutions of these equations; in the absence of an outer flow, no steady solu-
tion is possible as the flow converges upon and erupts from the stagnation point. When classical
forced convection is introduced, and its ‘strength’ exceeds a certain critical value, steady solutions
are possible and we determine this critical value for a range of values of the Prandtl number. For a
stagnation point flow of separation, as for example, the rear stagnation point of a sphere, Howarth
(7) shows that there is no steady solution. In our situation, one might suppose that a sufficiently
large positive temperature gradient would suppress the eruption of flow from the rear stagnation
point as outlined by Howarth. But this proves not to be the case and is at variance with the two-
dimensional analogue. We have supplemented the numerical solution of our equations with analyses
for asymptotically small and large values of the Prandtl number. Principle amongst the results we
have obtained is the role of the induced pressure gradient and its variation with the Prandtl number.

2. Problem formulation

We consider the steady flow at an axisymmetric stagnation point on a horizontal plane boundary
which is maintained at a temperature Tw that is different from the ambient T∞ with T∞ < Tw. In
the absence of any external flow, it has been shown (4), for two-dimensional flow, that variations
in the surface temperature induce a horizontal pressure gradient that in turn results in a flow along
the horizontal surface. The effect of an outer stagnation flow, which may counter or augment this
pressure gradient, has been considered in (4). In this paper, we consider the equivalent scenario at
an axisymmetric stagnation point. The flow is characterized by the Grashof number, Gr, which we
assume to be large, where

Gr = βga3(T0 − T∞)/ν2. (2.1)

In this definition β is the coefficient of thermal expansion (= T −1∞ for a perfect gas), g is the
acceleration due to gravity, ν is the kinematic viscosity, T0 = Tw(0) is a reference temperature
which we take as the temperature of the boundary at the stagnation point itself and a is a length
associated with the length scale of variations in temperature at the boundary. For Gr ≫ 1, and
introducing the Boussinesq approximation, the Navier–Stokes equations reduce to their boundary-
layer form

1
r̃

∂(r̃ ũ)

∂ r̃
+ ∂ṽ

∂ z̃
= 0, (2.2)

ũ
∂ ũ
∂ r̃

+ ṽ
∂ ũ
∂ z̃

= −∂ p̃
∂ r̃

+ ∂2ũ
∂ z̃2 , (2.3)

∂ p̃
∂ z̃

= θ̃ , (2.4)

ũ
∂θ̃

∂ r̃
+ ṽ

∂θ̃

∂ z̃
= 1

σ

∂2θ̃

∂ z̃2 . (2.5)

In these equations ar̃ measures radial distances along the boundary and aGr−
1
5 z̃ normal to it. The

velocity components parallel and normal to the surface are νa−1Gr
2
5 ũ and νa−1Gr

1
5 ṽ. The pressure

is ρν2a−2Gr
4
5 p̃, where ρ is the fluid density, the temperature is T∞ + (T0 − T∞)θ̃ and σ = ν/κ ,

with κ the thermal diffusivity, is the Prandtl number.
The boundary conditions for equations (2.2)–(2.5) are

ũ = ṽ = 0, θ̃ = θ̃w(r̃) at z̃ = 0, (2.6)
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and

ũ → ũe(r̃), θ̃ → 0 as z̃ → ∞, (2.7)

where θ̃w and ũe are prescribed quantities with θ̃w(0) = 1. We note at this point that if d θ̃w/dr̃ < 0,
the induced pressure gradient is driving fluid towards the stagnation point, while for positive values
fluid is driven away from it.

In the context of our stagnation-point flow with ũe = λ̃r̃ , it is convenient to assume that

θ̃w = 1 − br̃2. (2.8)

For reasons we shall outline below we are concerned for the most part with b > 0. The forms of ũe,
θ̃w lead us to seek a solution of the form

ũ = r̃ ũ0(z̃), ṽ = ṽ0(z̃), θ̃ = θ̃0(z̃) + r̃2θ̃1(z̃), p̃ = p̃0(z̃) + r̃2 p̃1(z̃). (2.9)

The equation for θ̃0 has a solution only for values of λ > 0, which is a requirement anyway as
we see later, and can be determined once ṽ0 has been found; the solution for p̃0 follows. Neither
of these quantities has any dynamical consequence. We see from (2.5) and (2.8) that the problem
under consideration is characterized by the three parameters b, λ̃ and σ . The first of these can be
eliminated if we write

ũ0 = b
2
5 u0, ṽ0 = b

1
5 v0, p̃0 = b− 1

5 p0, θ̃1 = bθ1, p̃1 = b
4
5 p1, r̃ = r, z̃ = b− 1

5 z.
(2.10)

The problem then becomes, for u0, v0, p1 and θ1,

2u0 + dv0

dz
= 0, (2.11)

u2
0 + v0

du0

dz
= −2p1 + d2u0

dz2 , (2.12)

dp1

dz
= θ1, (2.13)

2u0θ1 + v0
dθ1

dz
= 1

σ

d2θ1

dz2 , (2.14)

with
u0 = v0 = 0, θ1 = −1 at z = 0,

u0 → λ, θ1 → 0 as z → ∞,

}
(2.15)

where λ = b− 2
5 λ̃.

From the above equations, we are able to infer that the scaled pressure gradient p1 may be deter-
mined as follows:

p1 = −1
2
λ2 −

∫ ∞

z
θ1 dz. (2.16)

With θ1(0) = −1 and the reasonable assumption that θ1 < 0 throughout, an assumption justified
a posteriori, (2.16) illustrates clearly the competition between the induced and imposed pressure
gradients.
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290 J. ARRIETA-SANAGUSTÍN

3. Results

First let us consider the possible consequences of the pressure gradient in (2.16) above. With λ = 0,
and θ1 < 0 for all z, the induced pressure gradient is positive. In that case, the fluid flow will con-
verge upon the stagnation point r = 0, leading to an eruption of fluid from the stagnation point; as a
consequence, as in the two-dimensional case (4), no steady solution is available. However, clearly,
with λ sufficiently large, the pressure gradient will be sufficiently large, and negative, throughout the
bulk of the boundary layer, to result in a net, steady, radial flow. There will be a critical value, λc say,
below which the steady flow cannot be maintained. Consider next the case λ < 0 such that the outer
flow is converging upon the stagnation point. In the absence of any induced pressure gradient, that
is with b ≡ 0 in (2.8), we know (7) that no steady solution exists. If we take b < 0 so that there is
an induced flow radially outwards we may reasonably suppose that, again, a steady flow may be at-
tained, but this proves not to be the case. To integrate the system of (2.11)–(2.14) with the boundary
conditions (2.15), we have both developed a second-order accurate fully implicit finite difference
code and employed the Matlab routine bvp4c as a check. In both cases, the domain [0, z∞] has to
be prescribed, but the latter method has the advantage that the step length is automatically adjusted
according to the local rate of change of the developing solution.

In applying the outer boundary condition for u0 in (2.15), we may set the prescribed value of
λ at z = z∞ or, alternatively, set du0/dz = 0 there to achieve the same solution. As we have
already remarked, for b > 0, solutions exist for all λ greater than some critical value λc. For
λ < λc, our methods fail to yield a solution. In Fig. 1, we represent velocity and pressure profiles for
different values of the external flow velocity λ. As λc is approached the pressure gradient becomes
unfavourable at the wall leading to a small region of reversed flow near the boundary. In Fig. 2,

Fig. 1 (a) Profiles of the velocity component u0 and (b) p1 for values of σ = 1: (i) λ = 1.0 − − − −,
(ii) λ = 0.75 · − · − ·−, (iii) λ = λc, ——–
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MIXED STEADY CONVECTION AT A HORIZONTAL AXISYMMETRIC STAGNATION POINT 291

Fig. 2 (a) Profiles of the velocity component u0 and (b) −θ1 for values of σ : (i) σ = 0.01 · − · − ·−,
(ii) σ = 1.0 ——–, σ = 100.0, − − −−. In each case, λ = λc

we show velocity and temperature profiles for representative values of the Prandtl number σ . We
see, unsurprisingly, that as σ decreases, the thermal boundary layer thickness increases with the
consequence, see (2.16), that the induced pressure gradient increases which leads in turn, as we see
in Fig. 3(a), to an increase in λc. The induced pressure gradient at the boundary p1i = − ∫ ∞

0 θ1 dz
is shown in Fig. 3(b). For the case when b < 0 in (2.8), following the same procedures leads to no
steady solutions for λ < 0. With λ fixed at z = z∞, no converged solutions were obtained. Setting
du0/dz = 0 at z∞ yielded a converged solution, but with a value u0(z∞) = λ′ = −λ. A further
investigation of the unsteady analogue of our equations failed to approach a steady solution. This
is at variance with the results of Amin and Riley (4) in the two-dimensional case, whose results we
have been unable to reproduce. This anomaly may be resolved as follows. From (2.11), we see that
as z → ∞, u0 → λ and v0 ∼ −2λz. With these forms for u0 and v0 (2.14) show that

θ1 ∼ C1z + C2z−2 e−λz2/2 as z → ∞, (3.1)

and the difficulty associated with λ < 0 is apparent. A similar difficulty arises in (4).
We now supplement the numerical solutions of the governing equations by considering the asymp-

totic limits σ → 0, σ → ∞, respectively.

3.1 The case σ ≪ 1

For the case of classical free convection from a semi-infinite flat plate, Kuiken (8) has shown that
the flow regime divides into two parts. The same is true for the situation under consideration here.
From (2.14) we have, as a leading order solution that satisfies the condition at z = 0,

θ1 = −1 + αz, (3.2)
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292 J. ARRIETA-SANAGUSTÍN

Fig. 3 (a) The critical value of λ = λc: (i) from the numerical solution of (2.11)–(2.15) ——–, (ii) the asymp-
totic result λc ∼ 0.9833σ−1/5 as σ → 0, ·−·−·−, (iii) the asymptotic results λc ∼ 0.7427σ−4/15 as σ → ∞
−−−− (b) The induced pressure gradient at the boundary p1i = − ∫ ∞

0 θ1 dz: (i) from the numerical solution
of (2.11)–(2.15), ——–, (ii) the asymptotic result p1i ∼ 0.4827σ−2/5 as σ → 0 ·− ·−·−, (iii) the asymptotic
result p1i ∼ 0.866σ−1/5 as σ → ∞, − − −−

where α may be expected to be negligibly small, consistent with the calculations carried out for
small σ . This in turn leads to, from (2.13),

p1 = −z − β, (3.3)

where β is unknown. For the velocity components u0, v0 we then have

2u0 + dv0

dz
= 0, u2

0 + v0
du0

dz
= 2z + 2β + d2u0

dz2 . (3.4)

At the boundary, we require u0 = v0 = 0, but clearly there is no solution of (3.4) that satisfies the
condition u0 → λ as z → ∞. Indeed, as z → ∞ we find

u0 ∼ 6
1
2 z

1
2 +

(
3
2

) 1
2
βz− 1

2 + · · · , v0 ∼ −4
(

2
3

) 1
2

z
3
2 − 4

(
3
2

) 1
2
βz

1
2 + · · · . (3.5)

This solution is therefore only valid in an inner region. In an outer region, heat diffusion and con-
vection must be comparable, so that all terms in (2.14) are comparable in order of magnitude. This
leads to the scaling

u0 = σ− 1
5 U0, v0 = σ− 3

5 V0, p1 = σ− 2
5 P1, z = σ− 2

5 ζ. (3.6)
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Of course, θ1 remains O(1), and our (2.11)–(2.14) become

2U0 + dV0

dζ
= 0, (3.7)

U 2
0 + V0

dU0

dζ
= −2P1, (3.8)

d P1

dζ
= θ1, (3.9)

2U0θ1 + V0
dθ1

dζ
= d2θ1

dζ 2 . (3.10)

From (3.5), the matching condition between the outer and inner solutions requires that, together
with θ1 = −1,

U0 ∼ 6
1
2 ζ

1
2 , V0 ∼ −4

(
2
3

) 1
2
ζ

3
2 as ζ → 0. (3.11)

In addition, we require that

U0 → 3, θ1 → 0 as ζ → ∞, (3.12)

where we have written λ = σ− 1
5 3. Now, it is not possible to obtain a solution of the inviscid (3.7)

and (3.8) consistent with the matching conditions and the condition at infinity for a prescribed value
of 3. However, treating 3 as a free parameter, it is possible to find a unique value of it such that,
with V0(0) = 0, ζ− 1

2 U0 → 6
1
2 as ζ → 0. That value, which corresponds to our critical value, is

3c = 0.9833 from which we deduce that λc ∼ 0.9833σ− 1
5 as σ → 0. This asymptotic expression

is included in Fig. 3(a).
We may note that the constant β is not determined at leading order. The matching condition

shows, from (3.5), that a perturbation of relative order σ
2
5 in the outer solution introduces the con-

stant β and also indicates that the constant α in (3.2) is O(σ
2
5 ) which is consistent with our solutions

of the full equations.
We have already noted from our calculations that as σ decreases, with the concomitant increase

in the thermal layer thickness, the induced pressure gradient at the boundary increases. From our
analysis for σ ≪ 1, we see that this asymptotes as p1i ∼ −0.4827σ− 2

5 , a result that is included in
Fig. 3(b).

3.2 The case σ ≫ 1

We turn now to the other limiting case of σ large compared to unity. Figures 2(a, b) show that as
σ increases then, not unexpectedly, the thermal boundary layer diminishes in thickness, and within
it velocities and the induced pressure gradient also diminish. The scale of this thin inner region is
determined by ensuring that all the terms in the energy equation (2.14) are comparable in order of
magnitude. This requires the following scaling:

u0 = σ− 3
5 U0, v0 = σ− 4

5 V0, p1 = σ− 1
5 P1, z = σ− 1

5 ζ, (3.13)
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so that we now have in this inner region,

2U0 + dV0

dζ
= 0, (3.14)

0 = −2P1 + d2U0

dζ 2 , (3.15)

d P1

dζ
= θ1, (3.16)

2U0θ1 + V0
dθ1

dζ
= d2θ1

dζ 2 . (3.17)

Boundary conditions require

U0(0) = V0(0) = 0, θ1(0) = −1,

θ1 → 0 as ζ → ∞.

}
(3.18)

From the velocity profiles in Fig. 2(a), we see that du0/dz < 0 at z = 0 and decreasing in magnitude
as σ increases. In the numerical solutions of the above equations, it proves convenient to specify
dU0/dζ = 3, say, at large values of ζ . In this way, we find a critical value of 3 = 3c = 0.8397
below which there are no solutions with dU0/dζ = −0.25453 at ζ = 0.

Beyond this region of thickness O
(
σ− 1

5
)
, θ1 = 0 and there must be a balance of the convective

and diffusive terms in the momentum equation. To achieve this, we write

u0 = σ−2γ U1, v0 = σ−γ V1, p1 = −1
2
σ−4γ λ̃2, z = σ γ ξ, (3.19)

so that, from (2.11) and (2.12),

2U1 + dV1

dξ
= 0, U 2

1 + V1
dU1

dξ
= λ̃2 + d2U1

dξ2 . (3.20)

To determine the exponent γ , it is necessary to match the solution in this region with that of the
inner region. This is done most easily by matching the velocity gradients to give

σ− 2
5 3 = σ−3γ dU1

dξ

∣∣∣∣
ξ=0

or γ = 2
15 . In the numerical solution of (3.20), there will be a critical value of λ̃ = λ̃c that corre-

sponds to the gradient 3c. Thus, λ̃c = 0.7427 which in turn corresponds to λc = 0.7427σ− 4
15 . This

result is included in Fig. 3(a) and shows very good agreement with the numerical solutions of the
full equations. For λ > λc, we can obtain solutions. These correspond to values of 3 > 3c which
in turn leads to values of dU0/dζ > 0.

From this asymptotic solution for large σ , we find the induced pressure gradient at the boundary,
for the critical value λc, p1i ∼ −0.866σ− 1

5 , which is included in Fig. 3(b). As we have noted earlier
the induced pressure gradient is influenced by the thickness of the thermal boundary layer which in
this large Prandtl number case is very small, O

(
σ− 1

5
)
.
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4. Conclusions

In this paper, we have studied the steady flow at a planar, horizontal, axisymmetric stagnation point.
The classical stagnation-point flow is influenced by an induced pressure gradient that arises due to
variations in the temperature of the boundary. In particular, we have considered radially quadratic
variations in the wall temperature. If the temperature gradient is positive, then the stagnation-point
flow is enhanced. However, if the temperature gradient is negative, then the induced pressure gradi-
ent is negative, and this may overwhelm the classical stagnation-point pressure gradient to the extent
that no steady-state solution is available. Our numerical solutions for various values of the Prandtl
number σ have been augmented by asymptotic solutions for large and small values of σ . It has not
been possible to maintain steady flow at a rear stagnation point by introducing a wall temperature
that increases radially.

Acknowledgements

This work was carried out while the author was a visitor to the University of East Anglia supported
by the Universidad Carlos III under its research project Ayudas para la Movilidad. The author thanks
Dr M. G. Blyth and Professor N. Riley for helpful comments and suggestions.

References

1. K. Stewartson, On the free convection from a horizontal plate, Z. Angew. Math. Phys. 9 (1958)
276–282.

2. W. N. Gill, D. W. Zeh and E. del Casal, Free convection on a horizontal plate, ibid. 16 (1965)
539–541.

3. N. Amin and N. Riley, Horizontal free convection, Proc. R. Soc. Lond. A 427 (1990) 269–288.
4. N. Amin and N. Riley, Mixed convection at a stagnation point. Q. Jl Mech. Appl. Math. 48

(1995) 111–121.
5. J. H. Merkin, The effect of buoyancy forces on the boundary-layer flow over a semi- infinite

vertical flat plate in a uniform free stream. J. Fluid Mech. 35 (1969) 439–450.
6. P. G. Daniels, A singularity in thermal boundary-layer flow on a horizontal surface, ibid. 242

(1992) 419–440.
7. J. A. Howarth, A note on the growth at a three-dimensional axisymmetric rear stagnation point,

ibid. 59 (1973) 769–773.
8. H. K. Kuiken, Free convection at low Prandtl numbers, ibid. 37 (1969) 785–791.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/64/3/287/1912156 by Llibreria C

am
pus user on 08 February 2024


	Introduction
	Problem formulation
	Results
	The case 1
	The case 1

	Conclusions

