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Aberration-driven tilted emission in degenerate cavities
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The compensation of chromatic dispersion opened new avenues and extended the level of control upon pattern
formation in the temporal domain. In this paper, we propose the use of a nearly degenerate laser cavity as a
general framework allowing for the exploration of higher contributions to diffraction in the spatial domain. Our
approach leverages the interplay between optical aberrations and the proximity to the self-imaging condition,
which allows us to cancel or reverse paraxial diffraction. As an example, we show how spherical aberrations
materialize into a transverse bi-Laplacian operator and, thereby, explain the stabilization of temporal solitons
traveling off-axis in an unstable mode-locked broad-area surface-emitting laser. We disclose an analogy between
these regimes and the dynamics of a quantum particle in a double-well potential.
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I. INTRODUCTION

The understanding of self-organized spatiotemporal pat-
terns is key in photonics and the formation of shocks, vortices,
tilted waves, cross-roll patterns, weak optical turbulence,
and localized structures was observed experimentally and
studied theoretically in large-aspect-ratio lasers, see, e.g.,
Ref. [1–11]. Another recent example of multidimensional
spatiotemporal self-organization is the experimental obser-
vation of spatiotemporal mode-locking in multimode optical
fibers [12–14].

Dispersion compensation consists in combining elements
with opposed chromatic properties to achieve an overall par-
tial or total cancellation of the second-order dispersion. This
simple yet powerful idea permitted exploring the influence of
higher order contributions. While optical temporal localized
structures often result from the balance between self-phase
modulation and anomalous second-order dispersion [15–17],
it was recently proven that third- and fourth-order dispersion
lead to unforeseen effects such as the stabilization of solitons
and frequency combs [18–20], symmetry breaking [21], the
control of modulational instabilities [22,23], or the realization
of purely quartic solitons [24,25] as predicted in Ref. [26].

The paraxial diffraction emerging as a beam propagate
is mathematically equivalent to that of second-order chro-
matic dispersion. Optical cavities in which the path of light
is folded onto itself may contain a transverse plane that is
its own image after a round trip [27,28]. This so-called stig-
matic condition is equivalent to an effective cancellation of
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paraxial diffraction. Additionally imposing the nullification
of the round-trip wavefront curvature does not only achieve
the self-imaging condition (SIC) for the field intensity but
also for its amplitude. Self-imaging cavities have attracted a
great deal of attention for their rich spatiotemporal dynamics
[5,10,29–32] and for their application in speckle-free imaging
[33,34], frequency comb multiplexing [35], and controllable
and reconfigurable multimode fields [36,37]; see Ref. [38] for
a review. The proximity of the SIC was used to manipulate the
spatial coherence of the field [34,36,39–41], create a perfect
coherent absorber [42], realizing topological band structures
[43], or to form propagation invariant beams [44]. Aberra-
tions become crucial as the SIC is approached [31,45,46],
yet, their effect on spatiotemporal laser dynamics received
comparatively less attention. Photonic crystals also allow for
dispersion control [47,48] and lead to the zero-diffraction
regime [49]. Higher order spatial operators occur in fiber
lasers [50] and in optical cavities either at the onset of bista-
bility [51] or containing a photorefractive or semiconductor
medium [2–4,52]. Diffraction control was also proposed using
metamaterials [53–56] or atomic resonances [57].

In this paper, we study theoretically how aberrations
appear as leading effects in nearly degenerate broad-area
surface-emitting lasers. We show that these effects can cru-
cially modify the spatiotemporal mode-locking dynamics
and give rise to either spatially tilted beams or off-axis
temporal solitons. Our results represent a step further to-
wards a more comprehensive understanding of spatiotemporal
mode-locking [12–14], the realization of fully confined three-
dimensional light bullets [10,58,59], and may lead to new
ideas and applications for beam steering, tweezing [60], and
tailored optical energy potential landscapes [61,62].

II. TILTED HERMITE-GAUSS MODES

The dynamics of the transverse profile of the field close
to the SIC and in the presence of spherical aberrations is
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FIG. 1. Schematic of the fundamental Hermite-Gauss (HG)
mode As(x) (blue) and the corresponding potential V (x) (orange) of
Eq. (1) in the real (left) and Fourier space (right) for (a) b < 0, c > 0
and s = 1 (b) b > 0, c > 0, and s = 1. The resulting double-well
potential in the Fourier space with the minima located at k0 shown
in (b) corresponds to a tilted HG mode in the real space.

equivalent to the dynamics of a quantum harmonic oscillator
featuring a fourth-order derivative

−i∂θA = (
cx2 + b∂2

x + s∂4
x

)
A, (1)

where c, b, and s are real coefficients that correspond to the
residual wavefront curvature, diffraction, and spherical aber-
rations, respectively. We will focus our attention on spherical
aberrations, as it is often the dominant form of aberration. A
detailed derivation of Eq. (1) is provided in the Appendix.
Note that Eq. (1) was studied already, albeit in a different
context, in Ref. [63].

It is well-known that the potential V (x) = c x2 in Eq. (1)
supports localized solutions for bc < 0 [28]. Setting A(x, θ ) =
As(x)e−iωθ , with ω denoting the frequency of the eigenmode
and imposing boundedness of the solution, defines a singular
Sturm-Liouville problem (SLP) that allows determining ω:(

ω + cx2 + b∂2
x + s∂4

x

)
As = 0, lim

x→±∞ As = 0. (2)

For bc < 0 and s = 0, the solutions of Eq. (2) are the so-called
Hermite-Gauss (HG) modes Hn( x

σ
) with σ 2 = √

(−b/c) and
frequencies ωn = b

σ 2 (2n + 1) while n ∈ N is the modal index.
We will see later that this situation corresponds to the case of
a stable cavity devoid of aberration.

The HG modes are invariant under Fourier transform since
the multiplicative and differential terms in Eq. (1) are ex-
changed upon performing the latter. However, the role played
by the fourth-order derivative in Eq. (1) becomes more clear
in Fourier space, where the SLP becomes(

ω + c∂2
k − bk2 + sk4

)
Âs = 0. (3)

Here, we defined Âs as the Fourier transform of As. Hence,
the presence of a fourth-order derivative in Eq. (1) converts
the situation to that of a particle in a single- or double-well
potential. In case of b < 0 and c > 0, the potentials V (x) and
V̂ (k) = −b k2 + sk4 both feature a minimum at the origin as
shown in Fig. 1(a).

FIG. 2. Numerical solution of Eq. (1) for different values of b
and fixed values of s = 1 and c = 4.97 × 10−4. White lines indicate
the values of ±

√
〈x2|A|2〉.

The bounded solutions of Eq. (1) remain practically un-
affected by small values of s, since the solutions remain
concentrated at low values of k for which bk2 � sk4. Let us
now consider the situation where b changes its sign, which
usually signals the transition from a stable to an unstable
cavity. In that case, the potential V̂ (k) develops a negative
curvature around k = 0 for b > 0. If there were no aberrations
present in the system, i.e., s = 0, the laser would simply turn
off as there is no transverse mode to support emission. Math-
ematically speaking, this means that the bounded solutions of
the SLP cease to exists.

However, the situation can be remedied by the fourth-
order derivative as depicted in Fig. 1(b): For s > 0, two new
minima emerge symmetrically at k0 = ±√

b/2s, which al-
lows bounded solutions to continue to exist in the otherwise
unstable domain. The ground-state solution Âs(k) in Fourier
space can be approximated by a superposition of two bell-
shaped functions localized around ±k0 which, in real space,
amounts to a strongly modulated eigenmode with wavelength
λ⊥ = 2π/k0, akin to the interference between Bose-Einstein
condensates in a double-well potential [64,65]. This situation
is depicted in Fig. 2, where we solved for the ground state
of Eq. (1) numerically using complex time evolution. Note
that the waist of the mode decreases monotonically upon
approaching b = 0, but remains finite at b = 0. This is due
to the fact that the higher order derivative start to play a more
dominant role. In the unstable range b > 0, we notice that the
second-order moment increases, albeit at a faster rate. While
we could not obtain closed form analytical solutions of Eq. (2)
for s 
= 0, the following change of variable

A(x) = As(x) exp [ik0x − ωθ ], k0 =
√

b

2s
, (4)

permits canceling the first-order derivative and leads to(
ω − b2

4s
+ cx2 − 2b∂2

x + i
√

8bs∂3
x + s∂4

x

)
As = 0. (5)

Slowly varying envelope solutions, where the characteristic
length scale for the envelope As is much larger than 2π/k0

correspond to the inequality |∂xAs| � |k0As|. If this condition
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FIG. 3. Evolution of |�0(x, 0)|2and |	0(x, 0)|2 as a function of s. Traces are shifted for clarity. From top to bottom, s = (5, 1, 0.5, 0.1).
Other parameters are (b, c) = (0.7873, 0.0004973).

is fulfilled, one may neglect the third- and fourth-order deriva-
tives in Eq. (5), leading to(

ω − b2

4s
+ cx2 − 2b∂2

x

)
As = 0. (6)

By comparing Eq. (1) with Eq. (2) we note that the latter is
again a HG equation where the parameter b has been replaced
by −2b, which fully explains the increased diverging rate of
the second moment in Fig. 2. We note that the frequencies ω

are shifted due to the additional term b2/(4s).
In summary, we disclose the surprising result that an un-

stable cavity does not necessarily turn off upon crossing the
SIC, and lasing eigenmodes can still be supported by spherical
aberrations. The modes can be approximated by

A(x, θ ) = Hn

( x

σ

)
exp [i(k0x − ωnθ )], (7)

ωn = b2

4s
− 2b

σ 2
(2n + 1), (8)

σ 2 =
√

2b

c
, k0 =

√
b

2s
. (9)

Since k0 ∈ R, it is convenient to define two families of
eigenfunctions �n(x, θ ) and 	n(x, θ ) as

�n(x, θ ) = Hn

( x

σ

)
cos (k0x)e−iωnθ , (10)

	n(x, θ ) = Hn

( x

σ

)
sin (k0x)e−iωnθ . (11)

The latter are depicted in Figs. 3 and 4, respectively. We
observe the effect of the parameter s on the ground states
�0 and 	0 in Fig. 3. To stabilize a bounded eigenmode, the
decrease of s must be compensated by additional oscillations
and, therefore, an increase in k0 ∼ 1/

√
s. In Fig. 4, we also

depict how the intensity of the modes �n(x, θ ) and 	n(x, θ )
alternate between even and odd when varying n.

We now turn our attention to the two-dimensional (2D)
transverse profile whose evolution is governed by

−i
∂A

∂θ
= (

cxx2 + cyy2 + bx∂
2
x + by∂

2
y + s∇4

⊥
)
A. (12)

Here, we assume that the cavity possesses two orthogonal
axes denoted r⊥ = (x, y) and, for the sake of generality, we

introduced dichroism in Eq. (12), i.e., bx 
= by and cx 
= cy.
The effect of spherical aberration in 2D translates into a bi-
Laplacian operator ∇4

⊥ = ∂4
x + 2∂2

x ∂2
y + ∂4

y . We note that ∇4
⊥

is the only fourth-order operator that preserves the rotational
symmetry both in real and in Fourier space, which is consis-
tent with the idea of spherical aberration. The equivalent SLP
for A(r⊥, θ ) = As(r⊥) exp(−iωθ ) reads

0 = (
ω + cxx2 + cyy2 + bx∂

2
x + by∂

2
y + s∇4

⊥
)
As. (13)

When s = 0 and the two conditions bxcx < 0 and bycy < 0 are
simultaneously verified, the SLP admits separable solutions
that are simply the product of the HG modes in the x and
y directions discussed previously [28]. We now consider the
effect of aberration close to the SIC when the cavity becomes
unstable. Due to the inherent dichroism present in any realistic
experimental system, one can assume that the cavity becomes
unstable first in one direction, say the x direction. Applying
the Fourier transform to Eq. (13) leads to

0 = [
ω + cx∂

2
kx

+ cy∂
2
ky

+ V̂ (k⊥)
]
As, (14)

where we defined the potential in Fourier space:

V̂ (k⊥) = −bxk2
x − byk2

y + s
(
k2

x + k2
y

)2
. (15)

A representation of V̂ (k⊥) for three different values of bx is
given in Fig. 5. We see that the transition from a stable to an
unstable cavity is obtained when bx changes its sign from neg-
ative to positive, which gives rise to the appearance of two new
minima as observed in the 1D case in Fig. 1. Their position
is obtained by simply setting ∂kxV̂ = ∂kyV̂ = 0, which leads

to k±
⊥ = ±(

√
bx
2s , 0). As already discussed, this corresponds to

off-axis emission on the x axis and stable on-axis emission on
the y axis. The curvature of V̂ (k⊥) around the two minima in
k±

⊥ upon back-transforming to direct space corresponds to the
effective diffraction experienced by a wave-packet centered
around this tilted wave vector k±

⊥. We obtain

1

2

∂2V̂

∂k2
x

= 2bx,
1

2

∂2V̂

∂k2
y

= bx − by,
∂2V̂

∂kx∂ky
= 0. (16)

The curvature in the x direction changed from −bx → 2bx,
similarly to the 1D case. However, the perpendicular direction
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FIG. 4. Evolution of �n(x, 0)and 	n(x, 0) as a function of the modal index n. We note the even/odd alternating sequence. Traces are shifted
for clarity. From top to bottom, n = (3, 2, 1, 0). Other parameters are (b, c, s) = (0.7873, 0.0004973, 1).

is also affected by the off-axis emission, leading to the sub-
stitution by → by − bx. In the case of a cavity that changes
behavior from stable bx < 0 to unstable bx > 0, the off-axis
emission along the x direction that restabilizes the emission
renders the perpendicular direction more diffractive since
by − bx < by if bx > 0. The results of Fig. 5 entice us to seek
again a modulated profile

A(r⊥) = As(r⊥) exp [i(k0x − ωθ )] (17)

with k0 = √
bx/(2s). Truncating to second order, we get the

approximate SLP problem

b2
x

4s
− ω = [

cxx2 + cyy2 − 2bx∂
2
x + (by − bx )∂2

y

]
As, (18)

where the modification of the diffraction coefficients in
Eq. (18) is fully consistent with the discussion of the curvature
of V̂ given in Eq. (16). The eigenmodes of such an unstable
cavity are the product of a modulated HG mode in the unsta-
ble direction and a regular HG mode in the y direction. As
such, we define the eigenmode family with two modal indices
(n, m):

�n,m(r⊥, θ ) = Hn

(
x

σx

)
Hm

(
y

σy

)
cos (k0x)e−iωn,mθ ,

	n,m(r⊥, θ ) = Hn

(
x

σx

)
Hm

(
y

σy

)
sin (k0x)e−iωn,mθ ,

ωn,m = b2
x

4s
− 2bx

σ 2
x

(2n + 1) + by − bx

σ 2
y

(2m + 1),

σ 2
x =

√
2bx/cx,

σ 2
y = √

(bx − by)/cy. (19)

III. MULTIDIMENSIONAL MODE-LOCKED
TILTED PATTERNS

The situation considered in Eq. (1) materializes, for in-
stance, in the study of passively mode-locked integrated
external-cavity surface-emitting laser (MIXSELs) in a near-
degenerate cavity [29] as depicted in Fig. 6. Here, the gain (G)
and saturable absorber (SA) media are enclosed in a single mi-
crocavity and the external mirror is assumed to be ideal while
the collimating lens is not. Our modeling approach is based
on a Haus master equation model for passive mode-locking
(PML) adapted to the experimentally relevant long cavity
regime [59,66–68], where the PML pulses become individ-
ually addressable temporal localized states (TLSs). The Haus
equation relates the slow evolution of the three-dimensional
intracavity field E (r⊥, t, θ ) to the dynamics of the population
inversion in the gain N1(r⊥, t ) and the saturable absorber
N2(r⊥, t ) as

∂E

∂θ
= [(1 − iα1)N1 + (1 − iα2)N2 − κ + L]E , (20)

∂N1

∂t
= γ1(J1 − N1) − N1|E |2, N1(r⊥, 0) = J1, (21)

∂N2

∂t
= γ2(J2 − N2) − ŝN2|E |2, N2(r⊥, 0) = J2. (22)

FIG. 5. Birth of two symmetrically located minima for the Fourier potential V̂ for a stable, marginal, and unstable cavity with (from left to
right) bx = (−0.2, 0, 0.05). Other parameters are (by, s) = (−0.8, 1).
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FIG. 6. A schematic of the MIXSEL, where both the gain (green)
and the saturable absorption (pink) are contained in the same micro-
cavity. It is coupled face to face to a distant external mirror by an
imperfect self-imaging system.

In this formalism, the variable t ∈ [0, τ ] represents the
round-trip time in the external cavity and θ is a second dimen-
sionless time scale normalized by τ . The latter corresponds
to the slow evolution of the pulse under the combined ef-
fect of gain, absorption and spatiotemporal filtering. The two
transverse dimensions are denoted r⊥ = (x, y) and allow for
pattern formation in the plane perpendicular to the propaga-
tion direction of the pulse, cf. Fig. 6. Note that in the long
cavity regime, the spatiotemporal distributions of the carriers
Nj (r⊥, t ) are slaved to the evolution of the optical field [66,68]
and do not depend explicitly on the slow timescale θ . In this
regime, one can safely assume a full recovery of the carrier
between pulses and a total loss of memory from one round
trip toward the next one. In Eqs. (20)–(22), we define κ as the
round-trip cavity losses and α j are the linewidth enhancement
factors of the two active media that relax with timescales γ −1

j
toward the equilibrium values Jj . The ratio of the saturation
fluence of the gain and of the SA is denoted by ŝ. A standard
pseudospectral split-step method was used for the numerical
simulations [59]. The effective cavity spatiotemporal linear
operator L accounts for the finite gain bandwidth and chro-
matic dispersion but also for nonperfect imaging conditions,
diffraction, parabolic wavefront curvature, and mirror losses
due to finite aperture. L is given by

L = dg∂
2
t + L⊥, (23)

where dg is the temporal diffusion coefficient representing the
gain bandwidth and L⊥ is a transverse round-trip operator.

The Fresnel transform [69] permits calculating the trans-
verse effects occurring at each round trip analytically from
the round-trip (ABCD) matrix in the paraxial approximation
[28]. In the presence of aberrations, its calculation is achieved
by expanding the exact (nonparaxial) operator corresponding
to the lens as a sum of an ideal element plus a deviation.
The latter potentially contains all the wavefront curvature
contributions beyond the parabolic approximation. Assuming
a large ratio between the focal length of the mirror and that
of the lens permits expressing the spherical aberrations as
a bi-Lapacian operator, see the Appendix for details. The
transverse round-trip operator L⊥ in one transverse dimension
is given by

L⊥ = icx2 + (d f + ib)∂2
x + is∂4

x . (24)

The finite size of lenses and the numerical aperture of the
whole optical system is modeled by a soft aperture and a real

transverse diffusion parameter d f . Finally, b is the normal-
ized paraxial diffraction parameter and c is the normalized
parabolic wavefront curvature. The latter are the off-diagonal
elements of the round-trip ABCD matrix [28], and s is the
spherical aberration parameter. We note that moving the
MIXSEL chip in Fig. 6 modifies b while moving the mirror
modifies both b and c.

A qualitative model for the transverse profile of the TLSs
such as the one derived in Refs. [10,59] can be obtained
by essentially adapting New’s method for PML [70] to the
situation at hand. This method exploits the scale separation
occurring between the pulse evolution, the so-called fast stage
in which stimulated emission is dominant, and the slow stage
that is controlled by the gain recovery processes. Assuming,
as in Refs. [10,59], that the spatiotemporal profile E (r⊥, t, θ )
can be factored as E (r⊥, t, θ ) = A(r⊥, θ )p(t ), with p(t ) a nor-
malized TLS profile, one obtains a Rosanov equation [71] for
the slow evolution of the TLS transverse profile A(r⊥, θ ) as

∂θA = [ f (|A|2) + L⊥]A. (25)

We define the effective nonlinearity as

f (P) = (1 − iα1)J1 g(P) + (1 − iα2)J2 g(ŝP) − κ. (26)

The nonlinear response of the active material to a pulse is
given by g(P) = (1 − e−P )/P [10,59,70].

Equations (25) and (26) provide a unified framework which
allows bridging our results for spatiotemporal dynamics with
the former results of Refs. [71,72] for the case of static
autosolitons in bistable interferometers. There, the function
g(P) should be replaced by the saturated line-shape transition
∼(1 + P)−1. As such, our discussion of the effect of aber-
rations close to SIC is equally valid for temporal solitons,
regular mode-locking, and CW beams such as the tilted beam
solutions observed in [29,32].

In one-dimension, Eq. (1) is recovered for the empty cavity,
i.e., f = 0. Hence, we expect the emergence of a stable family
of �n and 	n tilted HG modes (10,11) in the unstable cavity,
where the condition bc < 0 is violated. We performed a bifur-
cation analysis of Eq. (25) in one transverse dimension using
path-continuation framework pde2path [73]. The results are
summarized in Fig. 7 in the unstable cavity regime, where the
peak powers for the fundamental tilted modes �0 (red) and 	0

(blue) are shown in Fig. 7(a) as a function of the gain bias J1

normalized to the threshold value Jth. Furthermore, two exem-
plary profiles of �0 and 	0 at the same fixed gain value (gray
dashed line) are depicted in Figs. 7(b) and 7(c), respectively.
For both modes, we observe the typical subcritical transition
that leads to bistable TLSs as detailed in Refs. [17,59]. The
high intensity branch is stable while the lower branch is un-
stable and creates a separatrix with the stable off solution. For
the parameters chosen, the leftmost limiting fold bifurcations
F1 and F2 are almost identical for �0 and 	0. A small region
of the Andronov-Hopf (AH) instability for �0 exists between
points H22 and H23. In this region, a small amplitude oscilla-
tion is visible in time simulations. Both modes are limited by
the AH bifurcations H11 and H24, respectively, for high gain
values. We stress that these nonlinear modulated HG modes
that are solutions of Eqs. (25) and (26) correspond to a train
of TLSs whose profile is a tilted beam supported by spherical
aberrations in an unstable cavity.
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FIG. 7. (a) Branches of one-dimensional tilted HG modes �0

(red) and 	0 (blue) of Eq. (25) as a function of the normalized
gain bias J1/Jth. The mode �0 is stable (solid line) between the
fold F2 (cyan circle) and the AH point H22 as well as between
AH points H23 and H24 (red squares), respectively. The mode 	0

gains the stability at the fold F1 and remains stable up to the AH
bifurcation point H11. (b), (c) Exemplary profiles of �0 and 	0 for
J1 = 0.65Jth (gray dashed line). Real (turquoise, dashed), imaginary
(black, dotted), and intensity fields (blue, red, solid), respectively, are
presented. Parameters are α1 = 1.5, α2 = 0.5, J2 = −0.06, ŝ = 15,

κ = 0.035, df = 10−4, b = 0.78, c = 4.97 × 10−4, s = 1.0.

In two spatial dimensions, we assume the system to be
weakly astigmatic and, as discussed previously, that the SIC
is not reached simultaneously for both transverse dimensions.
For a cavity that is stable in the vertical and unstable in the
horizontal direction, we observed the tilted localized patterns

shown in Figs. 8(a)–8(c) by solving Eqs. (25) and (26) nu-
merically. The typical evolution for large values of bx (i.e.,
entering more deeply into the unstable region) is presented
together with the corresponding far-field power spectrum |Â|2.
Figures 8(d)–8(f) show the two peaks in the far field related
to the value of the transverse horizontal wave-number ±k0.
Clearly, an increase of bx leads to an increase of k0, which
corresponds to a higher frequency of the mode oscillations
in the near field. These results would correspond closely to
the experimental situation described either in Ref. [29,74]
for a mode-locked vertical surface-emitting external-cavity
semiconductor laser using a saturable absorber or in Ref. [32]
for a CW broad area laser. Our analysis uses a bi-Laplacian
operator that approximates the effect of spherical aberrations.
However, we verified that a more rigorous treatment using the
Fox-Li method yielded similar results for the modal structure
of the unstable cavity.

IV. CONCLUSIONS

In conclusion, we have investigated the effect of wavefront
aberrations in a degenerated cavity. We found that the inter-
play between spherical aberrations and the proximity to the
SIC may lead to modulated beams that can support either CW
or temporal solitons in a mode-locked broad-area MIXSEL.
These modulated beams are analogous to the eigenmodes of
a quantum particle in a double-well potential. They can be
analytically approximated by spatially modulated HG modes.
We linked the wavelength of their modulation to the param-
eters of the cavity. We note that the transition from a stable
towards an unstable cavity around SIC can be obtained in
two ways: Either for c > 0 and changing the sign of b from
negative to positive or for c < 0 and changing the sign of b
correspondingly. These two situations are not identical with

FIG. 8. (a)–(c): Intensity profiles of the 2D pattern obtained by the numerical simulations for three values of bx = (0.78, 1.02, 1.25),
respectively, at the fixed value of the current J1 = 0.65Jth. (d)–(f) Corresponding power spectra in the (kx, ky ) plane. Parameters are by = −0.39,

cx = cy = 4.97 · 10−4. Other parameters as in Fig. 7.
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respect to the effect of spherical aberrations since the off-axis
wave vector k0 = √

b/2s requires b and s to have the same
sign. As such, the sign of s dictates the situation in which one
can observe these modulated HG beams. While we focused on
the influence of spherical aberrations, we proposed a general
framework that, in principle, permits calculating the effect of
the other Seidel aberrations such as coma, distortion, or field
curvature in a cavity close to SIC. We believe that exhibit-
ing the link between these wavefront curvature defects and
their equivalent representations as spatial operators provides
a framework that could lead to a range of interesting research
avenues in photonics. Furthermore, the condition of a large
ratio between the focal distances of the aberrated lens and
the nonaberrated other elements could be relaxed. In this
situation, spherical aberrations translate into nonlocal spatial
operators that may lead to rich pattern formation scenarios, as
observed in other fields [75–77].
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APPENDIX: SPHERICAL ABERRATION
CLOSE TO THE SIC

In this Appendix, we derive how the effect of spherical
aberrations can be recast into the form of a bi-Lapacian
differential operator in the paraxial equation governing the
field evolution after each round trip. We will use the formal-
ism of wave optics provided by generalized Huygens–Fresnel
transform (HFT) for ABCD systems [28]. We note that the
HFT allows for the composition of parabolic operators, i.e.,
quadratic wavefront profiles induced by parabolic lenses as
well as paraxial diffraction, since the latter also corresponds
to a parabolic operator in Fourier space. We characterize our
system by an ABCD round-trip matrix

W =
(

A B
C D

)
, (A1)

with det(W ) = AD − BC = 1. The generalized HFT for the
passage of light through a first-order optical system [69]
composed of parabolic elements is given in one transverse
dimension by

O(x, l ) =
√−i

λB
eikl

∫ ∞

−∞
O(ξ, 0)

× exp
[
i
π

λB
(Aξ 2 − 2xξ + Dx2)

]
dξ, (A2)

where O(x, 0) is the incoming field passing through the sys-
tem characterized by the ABCD matrix W and k = 2π/λ

is the wave vector of light. We note that B plays the role
of a propagation distance while C is an inverse of a dis-

tance and represents wavefront curvature. Further, A, D are
dimensionless quantities that correspond to spatial and angu-
lar magnification, respectively.

Close to the SIC, we consider the limit B → 0 which
renders Eq. (A2) singular. This difficulty can be avoided by
factoring the quadratic form as follows:

Aξ 2 − 2xξ + Dx2 = A
(
ξ − x

A

)2
+

(
D − 1

A

)
x2. (A3)

Using that (D − 1
A )/B = C/A, the Huygens-Fresnel inte-

gral given in Eq. (A2) becomes

O(x, l ) = eikl ei π
λ

C
A x2

∫ ∞

−∞
O(ξ, 0)

×
√−i

λB
exp

[
i
πA

λB

(
ξ − x

A

)2
]

dξ . (A4)

Equation (A4) will be the form of the Huygens–Fresnel inte-
gral used in the rest of the Appendix.

As mentioned in the main text, we consider the simplest
case of the self-imaging cavity [29] consisting of one lens
of focal length f and one mirror or radius of curvature R,
separated by distances d1 and d2, see Fig. 6. The resulting
round-trip propagation matrix reads

W = D1L0D2MD2L0D1, (A5)
with

Dj =
(

1 d j

0 1

)
, (A6)

L0 =
(

1 0

− 1
f0

1

)
, (A7)

M =
(

1 0

− 2
R 1

)
. (A8)

The SIC for which one finds W = Id is encountered for the
following values of of d1,2:

d∗
1 = f + f 2

R
, (A9)

d∗
2 = f + R. (A10)

Expanding to first order in δd j = d j − d*
j , one obtains

T =
⎛
⎝ 1 2

(
δd1 + δd2

f 2

R2

)
− 2

f 2 δd2 1

⎞
⎠. (A11)

We conclude that, close to the SIC, small displacements from
the MIXSEL chip induce a B coefficient, whereas moving
the mirror modifies both the values of B and C. Finally, we
can safely assume that A = D = 1 at first order in O(δdj ).
In addition to small deviations from the SIC, we consider
that the focal length of the lens depends on its radial position
and we model the spherical aberration as f (x) = f0 + σx2.
Denoting the field profile before and after the lens as Ei and
Eo, respectively, we have

Eo(x) = e−i π
λ

x2

f Ei(x). (A12)

Denoting the operator corresponding to the effect of the lens
by L, we separate the contribution from the unperturbed lens
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with focal length f0 and matrix L0 as

L = L0 + δL. (A13)

Using that

1

f (x)
− 1

f0
� −

(
σ

f 2
0

)
x2, (A14)

we write Eq. (A12) as

Eo(x) = e−i π
λ

x2

f0

[
1 +

(
e

iπσ

λ f 2
0

x4

− 1

)]
Ei(x), (A15)

which allows us to express the action of the aberration opera-
tor δL : Ei → Eo as

Eo �
[

exp

(
i
π

λ

σ

f 2
0

x4

)
− 1

]
exp

(
−i

π

λ

x2

f0

)
Ei. (A16)

Finally, we will employ the proximity of the SIC to sim-
plify the representation of the round-trip operator in the
presence of the aberrations. The full operator W [cf. Eq. (A5)]
is given by

W = D1LD2MMD2LD1.

Using Eq. (A13), we can expand W as
W = W0 + δW, (A17)

where we defined the unperturbed round-trip operator as W0 =
D1L0D2MD2L0D1. The expression of δW reads after simplifi-
cation and to the first order in O(δL):

δW = D1(δL)L−1
0 D−1

1 W0 + W0D−1
1 L−1

0 (δL)D1. (A18)

Further, we can simplify the dependence on δL in Eq. (A18)
using the exact SIC, which amounts to setting W0 = Id in
Eq. (A18). Indeed, since δL is already a small quantity, the
error incurred in setting W0 = Id will be second order. We
are left calculating the two contributions of aberrations to the
round-trip field evolution. We have δW = F1 + F2 with

F1 = D1(δL)L−1
0 D−1

1 , F2 = D−1
1 L−1

0 (δL)D1. (A19)

In both cases, we can express Fj as a double integral involving
the HFT that involves the spherical aberration of the lens. We
combine the two steps corresponding to γ1→2 = L−1

0 D−1
1 and

γ2→1 = D−1
1 L−1

0 into a single Fresnel transform. Further, we
employ the SIC to find

γ1→2 =
(

1 − f
(
1 + f

R

)
1
f − f

R

)
, (A20)

γ2→1 =
(− f

R − f
( f

R + 1
)

1
f 1

)
. (A21)

As a last approximation, we consider the limit of a long cavity
for which the focal length of the mirror is large in comparison
with the focal length of the collimator lens. As such, we
can define ε = f /R � 1. This allows us to approximate the
operators γ j as

γ1→2 =
(

1 − f0

1
f0

0

)
+ O(ε), (A22)

γ2→1 =
(

0 − f0

1
f0

1

)
+ O(ε). (A23)

Writing the action of F1 using three integral transforms F1 :
E0 → E3 leads to

E1(x) = ei π
λ f0

x2
∫ ∞

−∞
E0(ξ )

√
i

λ f0
exp

[
−i

π

λ f0
(ξ − x)2

]
dξ,

E2(x) =
(

e
i π

λ
σx4

f 2
0 − 1

)
e−i π

λ f0
x2

E1(x),

E3(x) =
√

−i

λ f0

∫ ∞

−∞
E2(ξ ) exp

[
i

π

λ f0
(ξ − x)2

]
dξ . (A24)

The action of F1 can be expressed by the following kernel:

E3 =
∫ ∞

−∞
E0(z)K1(x, z)dz, (A25)

where the kernel K1 is defined as

K1(x, z) = 1

λ f0
e−i π

λ f0
(z−x)(z+x) (A26)

×
∫ ∞

−∞

(
e

i π
λ

σy4

f 2
0 − 1

)
ei 2π

λ f0
(z−x)ydy.

For small aberration, we can expand K1 at first order in σ ,
which leads to

K1(x, z) � iπσ

λ2 f 3
0

e−i π
λ f0

(z−x)(z+x)
∫ ∞

−∞
y4ei 2π

λ f0
(z−x)ydy.

Using t = 2πy/(λ f0), we find

K1(x, z) = i
σ f 2

0

2k3
e−i π

λ f0
(z−x)(z+x)

δ(4)(z − x), (A27)

where we used the fact that∫ ∞

−∞
t neiωt dt = 2π (−i)nδ(n)(ω). (A28)

Here, we defined δ(n) as the nth derivative of the Dirac delta
which associates with the local value of the nth derivative of
a function. Since δ(n) is a well-localized function, we can set
z = x and obtain

K1(x, z) = i
σ f 2

0

2k3
δ(4)(z − x). (A29)

Performing the convolution with δ(n) is identical to taking
the fourth derivative in direct space which yields the fourth
derivative contribution. The action of F1 to first order is

F1 : E0 → E3,

E3(x) = i
σ f 2

0

2k3
∂4

x E0(x). (A30)

The action of F2 can be found in a similar fashion using three
integral transforms F2 : E0 → E3 and reads

E1(x) =
∫ ∞

−∞
E0(ξ, 0)

√
−i

λ f0
exp

[
i

π

λ f0
(ξ − x)2

]
dξ,

E2(x) =
(

e
i π

λ
σx4

f 2
0 − 1

)
e−i π

λ f0
x2

E1(x),
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E3(x) =
√

i

λ f0

∫ ∞

−∞
E2(ξ )

× exp

[
−i

π

λ f0
(−2xξ + x2)

]
dξ . (A31)

Similarly, the action of F2 can be expressed as a integral

E3 =
∫ ∞

−∞
E0(z, 0)K2(x, z)dz, (A32)

where we defined the kernel K2 as

K2(x, z) = 1

λ f0
ei π

λ f0
(z−x)(z+x)

×
∫ ∞

−∞

(
e

i π
λ

σy4

f 2
0 − 1

)
exp

[
i

2π

λ f0
y(x − z)

]
dy.

(A33)

Expanding analogously the aberration contribution to first
order in σ and using Eq. (A28), we obtain the desired kernel

K2(x, z) = i
σ f 2

0

2k3
δ(4)(z − x). (A34)

We conclude that, to the first order in σ , the action of F2 is
identical to that of F1:

F2 : E0 → E3,

E3(x) = i
σ f 2

0

2k3
∂4

x E0(x). (A35)

In summary, the total effect due to spherical aberration
close to self-imaging in the one-dimensional case reads

E3(x) = i
σ f 2

0

k3
∂4

x E0(x). (A36)

The generalization of these calculations to two-dimensions
proceeds without difficulties and yields

E3(r⊥) = i
σ f 2

0

k3
∇4

⊥E0(r⊥). (A37)
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