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Abstract
Fas-	Associated	protein	with	Death	Domain	 (FADD),	 a	key	molecule	controlling	cell	
fate	by	balancing	apoptotic	versus	non-	apoptotic	functions,	is	dysregulated	in	post-	
mortem brains of subjects with psychopathologies, in animal models capturing certain 
aspects of these disorders, and by several pharmacological agents. Since persistent 
disruptions in normal functioning of daily rhythms are linked with these conditions, 
oscillations	over	time	of	key	biomarkers,	such	as	FADD,	could	play	a	crucial	role	in	bal-
ancing	the	clinical	outcome.	Therefore,	we	characterized	the	24-	h	regulation	of	FADD	
(and	linked	molecular	partners:	p-	ERK/t-	ERK	ratio,	Cdk-	5,	p35/p25,	cell	proliferation)	
in	key	brain	regions	for	FADD	regulation	(prefrontal	cortex,	striatum,	hippocampus).	
Samples	were	collected	during	Zeitgeber	time	 (ZT)	2,	ZT5,	ZT8,	ZT11,	ZT14,	ZT17,	
ZT20,	and	ZT23	(ZT0,	lights-	on	or	inactive	period;	ZT12,	lights-	off	or	active	period).	
FADD	showed	similar	daily	fluctuations	in	all	regions	analyzed,	with	higher	values	dur-
ing	lights	off,	and	opposite	to	p-	ERK/t-	ERK	ratios	regulation.	Both	Cdk-	5	and	p35	re-
mained stable and did not change across ZT. However, p25 increased during lights off, 
but	exclusively	in	striatum.	Finally,	no	24-	h	modulation	was	observed	for	hippocampal	
cell proliferation, although higher values were present during lights off. These results 
demonstrated	a	clear	daily	modulation	of	FADD	in	several	key	brain	regions,	with	a	
more prominent regulation during the active time of rats, and suggested a key role for 
FADD,	and	molecular	partners,	in	the	normal	physiological	functioning	of	the	brain's	
daily rhythmicity, which if disrupted might participate in the development of certain 
pathologies.
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1  |  INTRODUC TION

In	 the	 so-	called	 extrinsic	 apoptotic	 pathway,	 cell	 death	 is	 initiated	
trough	 Fas	 receptor	 activation,	 followed	 by	 the	 signaling	 of	 Fas-	
Associated	protein	with	Death	Domain	(FADD)	with	other	intracellu-
lar	proteins	(see	García-	Fuster	et	al.,	2016;	Ramos-	Miguel	et	al.,	2012, 
and	references	within).	Previous	evidence	has	depicted	this	signaling	
pathway,	and	particularly	FADD,	as	a	key	molecule	 that	controls	cell	
fate	by	balancing	apoptotic	versus	non-	apoptotic	functions	(e.g.,	Park	
et al., 2005; Tourneur & Chiocchia, 2010),	therefore	suggesting	a	key	
role	for	this	protein	in	balancing	neurotoxic	versus	neuroplastic	events	
taking	place	 in	 the	brain	under	pathophysiological	conditions.	 In	 this	
context	and	over	the	past	15 years	our	research	group	has	extensively	
worked	 on	 characterizing	 the	 role	 of	 FADD	 in	 post-	mortem	 brain	
samples	 of	 subjects	 with	 psychopathologies	 (e.g.,	 major	 depression:	
García-	Fuster	et	al.,	2014;	drug	addiction:	García-	Fuster	et	al.,	2008)	
and/or	clinical	dementia	(e.g.,	Ramos-	Miguel	et	al.,	2017),	as	well	as	in	
the brains of animal models capturing certain aspects of these disor-
ders,	in	physiological	processes	such	as	aging	(Hernández-	Hernández	
et al., 2018a),	and	through	the	administration	of	several	pharmacologi-
cal	agents	(e.g.,	García-	Cabrerizo	&	García-	Fuster,	2019;	García-	Fuster	
&	García-	Sevilla,	2015, 2016;	García-	Fuster	et	al.,	2007, 2009, 2011; 
Hernández-	Hernández	et	al.,	2018a, 2018b;	Ledesma-	Corvi	&	García-	
Fuster,	2022).	The	main	 results	presented	FADD	as	a	great	pharma-
cological target since treatments with prototypical drugs for these 
disorders	 reverted,	 in	 some	cases,	FADD	brain	 changes	 in	 key	brain	
regions	 (mainly	 studied	 in	prefrontal	cortex,	 striatum	and	hippocam-
pus)	(some	data	reviewed	by	García-	Fuster	et	al.,	2016;	Ramos-	Miguel	
et al., 2012).	However,	all	of	these	experiments	were	performed	during	
the	light	phase	of	the	day	(lights-	on:	inactive	period	for	rodents)	and	did	
not	consider	the	impact	of	time-	of-	day	and/or	the	role	of	daily	fluctua-
tions	in	FADD	regulation.

In	this	context,	it	is	well	known	that	the	daily	rhythm	has	a	great	
influence on the regulation of cellular homeostasis and physiology 
(Godinho-	Silva	et	al.,	2019; Huang et al., 2011;	Kinouchi	&	Sassone-	
Corsi, 2020; Kon et al., 2017; Serin & Acar Tek, 2019),	and	persistent	
disruptions in its normal functioning could be behind different pa-
thologies	 (e.g.,	 McEwen	 &	 Karatsoreos,	 2015),	 for	 instance	 those	
related	to	psychopathologies	such	as	major	depressive	disorder	(e.g.,	
Bedrosian	&	Nelson,	2017; Homolak et al., 2018; Leng et al., 2019; 
Sato et al., 2022)	 and/or	 neurodegeneration	 (Duncan,	 2020; 
Maiese, 2021; Sharma et al., 2021; Standlee & Malkani, 2022; Wang 
& Li, 2021).	Therefore,	the	oscillations	over	time	of	certain	biomark-
ers	such	as	FADD	might	be	playing	a	crucial	role	in	maintaining	health	
and/or in the development of these pathologies. Moreover, given the 
importance of understanding how daily rhythms might influence drug 
efficacy	and/or	toxicity	during	pharmacological	studies	to	ensure	an	
optimal	treatment	response	(reviewed	by	Gaspar	et	al.,	2019),	our	goal	
was	to	characterize,	 for	 the	first	 time,	 the	24-	h	regulation	of	FADD	
in	key	brain	regions	in	which	FADD	has	been	shown	to	be	altered	in	
some	of	the	aforementioned	clinical	outcomes	(e.g.,	prefrontal	cortex,	
striatum,	hippocampus;	see	Ramos-	Miguel	et	al.,	2012	for	FADD	reg-
ulation	across	brain	regions	in	the	male	rat).

Moreover, to deepen our understanding on the daily modulation of 
FADD	at	the	cellular	 level,	some	key	molecular	markers,	with	certain	
links	to	FADD,	were	selected	for	this	study.	In	particular,	given	the	direct	
involvement	of	members	of	the	MAPK	signaling	(i.e.,	ERK1/2)	in	the	reg-
ulation	of	FADD	by	certain	pharmacological	agents	(e.g.,	García-	Fuster	
et al., 2007),	and	the	regulation	of	circadian	genes	by	components	of	this	
pathway	(e.g.,	Akashi	et	al.,	2008;	Eckel-	Mahan	et	al.,	2008; reviewed by 
Wang et al., 2020),	we	evaluated	the	daily	regulation	of	p-	ERK/t-	ERK.	
Additionally,	cyclin-	dependent	kinase-	5	(Cdk-	5)	has	been	ascribed	sev-
eral functions in the nervous system, ranging from neuronal migration, 
neuronal	outgrowth,	axonal	guidance,	and	synaptic	plasticity	(reviewed	
by Pao & Tsai, 2021),	and	has	been	shown	to	be	modulated	in	parallel	to	
FADD	following	desipramine	treatment	(see	Ledesma-	Corvi	&	García-	
Fuster,	2022),	and	to	crosstalk	with	MEK–ERK	signaling	 (e.g.,	Ramos-	
Miguel	&	García-	Sevilla,	2012).	Also,	Cdk-	5,	which	has	been	implicated	
in	the	regulation	of	circadian	clocks	under	physiological	conditions	(e.g.,	
Brenna	et	al.,	2019; Kwak et al., 2013; Ripperger et al., 2022),	is	known	
to	depend	on	co-	factors	p35	and	p25	for	its	activity	(Patrick	et	al.,	1999; 
Tsai et al., 1994).	In	fact,	the	dysregulation	of	Cdk-	5	activity	by	p25	ac-
cumulation	can	lead	to	neurotoxicity	and/or	various	neurodegenerative	
disorders	 through	constitutive	activation	and	misplacement	of	Cdk-	5	
(e.g.,	Cheung	&	Ip,	2012).	Finally,	since	Cdk-	5	has	a	role	on	hippocam-
pal	neurogenesis	 (e.g.,	 Lagace	et	 al.,	2008),	 and	brain	FADD	 (protein	
and	mRNA)	was	 increased	 in	 the	hippocampus	of	 rats	with	 impaired	
cell	 proliferation	 rates	 (Ki-	67+	mitotic	 progenitor	 cells;	García-	Fuster	
et al., 2011),	the	present	study	also	investigated	whether	cell	prolifera-
tion	in	the	hippocampus	was	subjected	to	a	24-	h	modulation.

2  |  E XPERIMENTAL PROCEDURES

2.1  |  Animals and brain samples collection

This	 study	 used	 42	 Sprague–Dawley	male	 adult	 rats	 (about	 400–
425 g)	that	were	bred	in	the	animal	facility	of	the	University	of	the	

Significance

The	 normal	 physiological	 functioning	 of	 the	 brain's	 daily	
rhythmicity is of great importance, since its disruption 
could	 lead	 to	 certain	 psychopathologies	 (i.e.,	 depression).	
Evaluating how key biomarkers oscillate over time is key to 
balance	 the	 clinical	 outcome.	 In	 particular,	 Fas-	Associated	
protein	with	Death	Domain	(FADD),	which	controls	cell	fate	
by	 balancing	 apoptotic	 versus	 non-	apoptotic	 functions,	 is	
dysregulated	 in	post-	mortem	brains	of	depressed-	patients,	
in animal models capturing certain aspects of the disorder, 
and by several antidepressants. This study proved a clear 
24-	h	modulation	of	FADD	in	several	key	brain	regions	of	im-
portance to depression, which if disrupted might participate 
in the development of depression.
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    |  3 of 10YÁÑEZ-GÓMEZ et al.

Balearic	Islands.	Rats	were	housed	in	groups	of	2–3	rats	under	con-
trolled	 environmental	 conditions	 (22°C,	 70%	 humidity,	 12-	h	 light	
and	dark	cycles,	 lights	on	at	8:00 a.m.,	Zeitgeber	 time	0,	ZT0,	and	
lights	 off	 at	 8:00 p.m.,	 ZT12)	with	 ab libitum access to a standard 
diet	and	tap	water.	Rats	were	acclimatized	to	the	experimenters	by	
handling	 them	 for	 at	 least	 2 days	 prior	 to	 beginning	 of	 the	 proce-
dure,	which	 complied	with	 the	ARRIVE	Guidelines	 (Percie	du	Sert	
et al., 2020),	 the	EU	Directive	2010/63/EU	and	 the	Spanish	Royal	
Decree	 53/2013	 for	 animal	 experiments,	 and	was	 approved	 both	
by	 the	Local	Bioethical	Committee	and	 the	Regional	Government.	
Unfortunately,	no	female	rats	were	available	at	the	time	when	this	
experiment	was	performed,	and	therefore	the	effect	of	sex	as	a	bio-
logical	variable	could	not	be	included	in	the	experimental	design.

Groups	of	allocated	rats	(n = 5–6	per	group;	see	Figure 1a)	were	
sacrificed	 every	 3 h	 by	 decapitation	 during	 a	 period	 of	 24 h	 (i.e.,	
ZT2,	ZT5,	ZT8,	ZT11,	ZT14,	ZT17,	ZT20,	 and	ZT	23).	Brains	were	
removed	and	dissected	freshly.	Initially,	the	whole	prefrontal	cortex	
was freshly dissected, and after separating both hemispheres, the 
striatum, and hippocampus were also collected from the right hemi-
sphere.	 Samples	 were	 immediately	 frozen	 in	 liquid	 nitrogen,	 and	
stored	at	−80°C	for	posterior	western	blot	analysis	of	key	cell	mark-
ers	 (see	Figure 1b).	The	 left	hemisphere	was	quickly	 frozen	 in	 iso-
pentane	at	−30°C	and	stored	at	−80°C	until	the	hippocampal	region	
was	 entirely	 cryostat-	cut	 (from	 approximately	 −1.72	 to	 −6.80 mm	
from	Bregma)	in	30 μm	sections	that	were	slide	mounted	(see	more	
details	in	García-	Cabrerizo	et	al.,	2020;	García-	Cabrerizo	&	García-	
Fuster,	2016;	García-	Fuster	et	al.,	2010),	and	kept	at	−80°C	until	the	
proliferation	of	novel	cells	(Ki-	67 + cells)	was	evaluated	by	immuno-
histochemical analysis in the dentate gyrus region.

2.2  |  Western blot analysis

Total	 homogenates	 were	 prepared	 as	 previously	 described	 (e.g.,	
Boronat	et	al.,	2001;	García-	Cabrerizo	&	García-	Fuster,	2016;	García-	
Fuster	et	al.,	2007)	and	brain	proteins	(40.5 μg of total protein which 

was	 quantified	 through	 BCA	 assay,	 Thermo	 Fisher	 Scientific,	 cat	
#23225)	of	 each	brain	 region	of	 study	were	 loaded	 into	10%–12%	
acrylamide	gels	 (depending	on	 the	molecular	weight	of	 the	protein	
under	 evaluation),	 separated	 by	 electrophoresis,	 transferred	 to	 ni-
trocellulose	 membranes,	 and	 incubated	 overnight	 at	 4°C	 with	 the	
following	primary	antibodies:	 (1)	anti-	FADD	(H-	181)	 (sc-	5559,	batch	
D0109;	 1:5000;	 Santa	 Cruz	 Biotechnology,	 CA,	 USA);	 (2)	 anti-	p-	
ERK1/2	(p44/p42)	(9101;	1:1000;	Cell	Signaling,	MA,	USA);	(3)	anti-	
t-	ERK1/2	(CEMI0112011,	Clone	631122;	1:1000;	Cell	Signaling);	(4)	
anti-	Cdk-	5	 (DC17)	 (sc-	249,	1:5000;	Santa	Cruz	Biotechnology);	and	
(5)	p35-	p25	 (C64B10)	 (2680,	1:1000;	Cell	 Signaling).	The	next	day,	
membranes were incubated with the appropriate secondary antibod-
ies	 (anti-	rabbit	or	anti-	mouse	 IgG	 linked	to	horseradish	peroxidase)	
for	1 h	at	room	temperature	(1:5000	dilution;	Cell	Signaling).	The	im-
munoreactivity of each target protein was detected with ECL rea-
gents	 (Amersham,	Buckinghamshire,	UK),	visualized	by	exposure	to	
an	 autoradiographic	 film	 (Amersham	 ECL	Hyperfilm)	 for	 1–60 min,	
and	 quantified	 with	 a	 GS-	800	 Imaging	 Calibrated	 Densitometer	
(Bio-	Rad,	CA,	USA).	In	each	gel,	individual	values	were	compared	to	
control	male	rats	(animals	sacrificed	at	ZT2)	to	estimate	the	%	mag-
nitude	of	change.	Note	that	ZT2	was	selected	as	our	“control	group”	
to which the other samples refer to, since it corresponds to the time 
of	day	which	we	usually	perform	all	experiments	 (10:00 h;	 see	e.g.,	
García-	Cabrerizo	&	García-	Fuster,	2015).	Each	sample	was	evaluated	
at	least	2–3	times	in	different	gels,	and	the	mean	value	for	each	rat	
was used to calculate the mean value per treatment group. β-	actin	
was used as a loading control since it was not regulated in a daily fash-
ion	in	any	brain	region	(see	representative	immunoblots	in	Figure 2).

2.3  |  Immunohistochemical analysis

Labeling	cell	expressing	the	endogenous	marker	Ki-	67	was	used	to	
assess the rate of hippocampal cell proliferation. To do so, three 
slides	 per	 rat	 containing	 eight	 sections	 each	 (24	 sections	 per	 rat),	
from the anterior, middle, and posterior part of the hippocampus 

F I G U R E  1 (a)	Experimental	design.	Brain	samples	from	male	Sprague–Dawley	rats	were	collected	during	the	light/dark	cycle	period	
of	24 h	(lights	on	vs.	lights	off).	Groups	of	treatment:	Zeitgeber	time	(ZT)	2	(n = 5),	ZT5	(n = 5),	ZT8	(n = 5),	ZT11	(n = 5),	ZT14	(n = 5),	ZT17	
(n = 6),	ZT20	(n = 5)	and	ZT23	(n = 6)	(ZT0,	lights-	on	or	inactive	period;	ZT12,	lights-	off	or	active	period).	(b)	Schematic	representation	of	the	
molecular	markers	evaluated	in	the	prefrontal	cortex	(PFC),	striatum	and	hippocampus.	Figure	modified	and	adapted	from	García-	Cabrerizo	
and	García-	Fuster	(2015).
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were	fixed	in	4%	paraformaldehyde.	Antigen	exposure	was	carried	
out	using	10%	sodium	citrate	(pH 6.0,	90°C,	1 h).	Subsequently,	the	
samples	were	incubated	for	30 min	with	a	.3%	H2O2	solution	(60 mL	
3%	stock + 540 mL	phosphate	buffer	 saline,	PBS)	 to	 inhibit	endog-
enous	peroxidase.	After	consecutive	washes	with	PBS,	the	rectan-
gular area surrounding the brain slices was sealed with a waterproof 
pen	to	prevent	the	liquid	from	escaping.	Then,	samples	were	blocked	
for	1 h	with	500 μL	of	bovine	serum	albumin	(BSA),	incubated	over-
night	 with	 the	 Ki-	67	 polyclonal	 antibody	 (1:20,000,	 provided	 by	
Professors	Huda	Akil	and	Stanley	J.	Watson,	Michigan	Neuroscience	
Institute,	 University	 of	Michigan,	 USA),	 and	 then	 for	 1 h	with	 the	
secondary	 anti-	rabbit	 antibody	 (1:1000,	 Cell	 Signaling).	 Positive	
cells were detected through signal amplification by incubating slides 
with	an	Avidin/Biotin	complex	and	a	DAB	chromogen,	generating	a	
brown signal. To be able to differentiate the proliferating cells from 
the	 rest,	 a	 final	 nuclei	 staining	 was	 done	 with	 cresyl	 blue-	violet.	
Subsequently,	tissue	dehydration	was	carried	out	in	a	battery	of	al-
cohols of ascending degrees, and slides were coverslipped following 
an	immersion	in	xylene	with	a	drop	of	adhesive.	Positive	cells	were	
quantified	manually	in	the	whole	dentate	gryus	of	all	sections	by	an	
experimenter	blind	to	the	treatment	groups	with	a	Leica	DMR	light	
microscope	(63×	objective	lens)	and	focusing	through	the	thickness	

of	the	section	(30 μm).	The	total	number	of	positive	cells	was	multi-
plied by the sampling factor 8 providing an estimate of the total num-
ber	of	positive	cells	per	marker	(e.g.,	García-	Cabrerizo	et	al.,	2020).

2.4  |  Data and statistical analysis

Results	 are	 expressed	 as	 the	 mean	 value	 ± standard deviation 
(SD),	and	for	each	rat,	individual	symbols	are	shown,	as	described	
in	 recent	 guidelines	 for	 reporting	 data	 in	 experimental	 biology	
(Michel	 et	 al.,	 2020).	 The	 number	 of	 data	 points	 (n)	 per	 marker,	
time point and brain structure included in the analyses for graphs 
in Figures 2–4 is included in Table S1. Cosinor analyses were per-
formed	to	assess	24-	h	rhythmicity	for	each	protein	of	study	at	each	
brain	 region.	To	do	so,	data	was	analyzed	with	R	Studio	 (Version	
3.3.0)	using	custom	R	scripts	available	(Bastiaanssen	et	al.,	2023).	
To	assess	the	overall	differences	between	day	and	night	(lights	on	
vs.	 off),	 data	 from	 ZT2-	ZT11	 or	 ZT14-	ZT23	 were	 combined	 and	
analyzed	with	GraphPad	Prism,	Version	9.4.1	(GraphPad	Software,	
CA,	USA)	 through	 two-	tailed	Student	 t-	tests.	The	 level	of	 signifi-
cance was set at p ≤ .05.	Data	will	be	available	upon	request	to	the	
corresponding author.

F I G U R E  2 Daily	modulation	of	FADD	(a–c)	and	p-	ERK/t-	ERK	ratio	(d–f)	in	rat	brain	pre-	frontal	cortex	(PFC)	(a,	d),	striatum	(b,	e)	and	
hippocampus	(c,	f).	Groups	of	treatment:	Zeitgeber	time	(ZT)	2,	ZT5,	ZT8,	ZT11,	ZT14,	ZT17,	ZT20	and	ZT23	(ZT0,	lights-	on	or	inactive	
period;	ZT12,	lights-	off	or	active	period).	See	Table S1	for	the	particular	number	of	data	points	(n)	per	marker	and	time	point	analyzed.	
Columns	represent	mean ± SD	of	n	experiments	per	group.	Individual	symbols	are	shown	for	each	rat.	Cosinor	analyses	were	performed	for	
each	protein	of	study	at	each	brain	region	to	assess	24-	h	rhythmicity.	Comparisons	between	lights	on	versus	lights	off	were	assessed	with	
two-	tailed	Student	t-	tests.	Bottom	panels:	Representative	immunoblots	depicting	labeling	of	FADD,	β-	Actin,	p-	ERK	and	t-	ERK	are	shown	for	
each	set	of	experiments.	*p < .05;	**p < .01;	***p < .001;	ns:	no	statistical	significance	(p > .05).
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3  |  RESULTS

3.1  |  Daily modulation of FADD and of 
p- ERK/t- ERK across brain regions

The	 regulation	 of	 FADD	 protein	 content	 showed	 similar	 daily	 fluc-
tuations in all brain regions analyzed, as reported by cosinor analy-
ses	 (prefrontal	 cortex:	 F2,34 = 9.58,	 p < .001;	 striatum:	 F2,37 = 19.06,	
p < .001;	hippocampus:	F2,39 = 8.71,	p < .001;	Figure 2a–c; see further 
details in Table S2).	When	combining	rats	from	the	day	or	night	peri-
ods	(lights	on	vs.	lights	off),	there	was	an	overall	upregulation	of	FADD	

for	 all	 brain	 regions	 during	 their	 active	 time	 (lights-	off	 period,	 pre-
frontal	 cortex:	 t = 3.12,	df = 35,	 **p = .004;	 striatum:	 t = 3.70,	df = 38,	
***p < .001;	hippocampus:	t = 3.52,	df = 40,	**p = .001:	Figure 2a–c).

As	for	the	regulation	of	the	p-	ERK/t-	ERK	ratio,	the	results	showed	
that it varied across brain regions, showing certain rhythmicity both 
in	 prefrontal	 cortex	 (F2,38 = 4.82,	 p = .013:	 Figure 2d)	 and	 striatum	
(F2,36 = 4.61,	p = .017;	Figure 2e),	but	not	in	hippocampus	(F2,36 = 2.77,	
p = .075;	Figure 2f; see further details in Table S2).	Moreover,	when	
comparing	 groups	 from	 day	 or	 night	 periods,	 p-	ERK/t-	ERK	 was	
downregulated	during	 their	 active	 time	 (i.e.,	 dark	phase),	 although	
only	 significantly	 in	 striatum	 (t = 2.66,	df = 37,	 *p = .011;	Figure 2e),	

F I G U R E  3 Daily	modulation	of	Cdk-	5	(a–c),	p35	(d–f),	p25	(g–i)	and	p35/p25	ratio	(j–l)	in	rat	brain	pre-	frontal	cortex	(PFC)	(a,	d,	g,	j),	
striatum	(b,	e,	h,	k)	and	hippocampus	(c,	f,	i,	l).	Groups	of	treatment:	Zeitgeber	time	(ZT)	2,	ZT5,	ZT8,	ZT11,	ZT14,	ZT17,	ZT20	and	ZT23	(ZT0,	
lights-	on	or	inactive	period;	ZT12,	lights-	off	or	active	period).	See	Table S1	for	the	particular	number	of	data	points	(n)	per	marker	and	time	
point	analyzed.	Columns	represent	mean ± SD	of	n	experiments	per	group.	Individual	symbols	are	shown	for	each	rat.	Cosinor	analyses	were	
performed	for	each	protein	of	study	at	each	brain	region	to	assess	24-	h	rhythmicity.	Comparisons	between	lights	on	versus	lights	off	were	
assessed	with	two-	tailed	Student	t-	tests.	Bottom	panels:	representative	immunoblots	depicting	labeling	of	Cdk-	5,	p35	and	p25	are	shown	for	
each	set	of	experiments.	*p < .05;	**p < .01;	ns:	no	statistical	significance	(p > .05).
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since	no	statistical	differences	were	observed	 in	prefrontal	cortex	
(t = 1.54,	df = 39,	p = .132;	Figure 2d)	or	hippocampus	(t = 1.52,	df = 37,	
p = .138;	Figure 2f).

3.2  |  Daily modulation of Cdk- 5 and p35/p25 
across brain regions

Both	Cdk-	5	 and	p35	 values	 remained	quite	 stable	 during	 the	differ-
ent hours evaluated, as well as showed no changes in their regulation 
when comparing day versus night periods for all brain regions of study 
(Figure 3a–f; statistical results reported in Table S2).	Moreover,	no	daily	
changes	were	observed	for	p25	and	p35/p25	ratio	in	prefrontal	cortex	
(F2,38 = .26,	p = .776	and	F2,38 = 1.04,	p = .363;	Figure 3g,j)	or	hippocam-
pus	(F2,39 = .15,	p = .863	and	F2,39 = .24,	p = .786;	Figure 3i,l);	also,	when	
comparing	day	versus	night	periods	(prefrontal	cortex:	t = .05,	df = 39,	
p = .957;	Figure 3g,j; hippocampus: t = .54,	df = 40,	p = .593;	Figure 3i,l).	
However, in striatum, p25 showed a daily significant fluctuation 
(F2,31 = 7.29,	p = .002;	Figure 3h).	Moreover,	p25	showed	an	overall	sig-
nificant	higher	expression	during	the	lights-	off	than	the	lights-	on	pe-
riod	in	this	region	(t = 2.27,	df = 32,	*p = .030;	Figure 3h).	Still,	and	in	line	
with	the	results	in	prefrontal	cortex	and	hippocampus,	the	calculation	
of the p35/p25 ratio showed no significant variations throughout the 
study	in	striatum	(F2,31 = 1.70,	p = .198;	Figure 3k).	In	this	sense,	p35/25	
ratio	showed	no	differences	in	expression	between	the	lights-	off	than	
the	lights-	on	period	in	this	region	(t = .02,	df = 34,	*p = .986;	Figure 3k).

3.3  |  Daily modulation of adult hippocampal cell 
proliferation

Although no significant rhythmicity was observed in hippocampal 
cell	proliferation	in	rats	across	time	(F2,39 = 1.53,	p = .229;	Figure 4a),	

the results showed a higher rate of cell proliferation during their ac-
tive	time	(i.e.,	 lights-	off,	t = 2.26,	df = 40,	*p = .029)	with	a	mean	 in-
crease	of	284	Ki-	67 + cells	and	as	compared	to	the	lights-	off	phase	
(Figure 4a).

4  |  DISCUSSION

The	regulation	of	FADD	protein	content	and	p-	ERK/t-	ERK	showed	
similar daily fluctuations in all brain regions analyzed, with higher 
overall	 values	 during	 the	 active	 time	 of	 rats	 (i.e.,	 lights	 off).	 Both	
Cdk-	5	 and	 p35	 values	 remained	 quite	 stable	 during	 the	 different	
hours evaluated, as well as showed no changes in their regulation 
when	comparing	day	(lights-	on)	versus	night	(lights-	off)	periods	for	
all brain regions of study. However, p25 showed an overall signifi-
cant	higher	expression	during	the	active	time	of	rats	(i.e.,	lights	off),	
but	exclusively	in	striatum.	Finally,	the	regulation	of	hippocampal	cell	
proliferation	did	not	follow	a	significant	24-	h	modulation,	although	
higher overall values were observed during the active time of rats 
(i.e.,	 lights	 off).	 In	 conjunction,	 these	 results	 demonstrated	 clear	
daily modulations of some of these markers in several regions of the 
brain	(i.e.,	FADD	oppositely	regulated	than	p-	ERK/t-	ERK	in	prefron-
tal	cortex	and	striatum),	suggesting	a	more	generalized	role	for	them	
in	the	brain,	while	others	were	regulated	in	a	region-	specific	manner	
(e.g.,	 p25	 in	 striatum,	 and	Ki-	67	 in	hippocampus),	 suggesting	 their	
involvement in more specific roles that deserve future studies.

The	present	results	proved	a	clear	24-	h	modulation	of	FADD	in	
several key brain regions, with a more prominent regulation during 
the	active	time	of	rats.	All	prior	experiments	evaluating	FADD	reg-
ulation in disease and/or by pharmacological drugs ascertained 
changes	during	the	inactive	time	of	rats	(lights	on).	Interestingly,	in	
all	 brain	 regions	 analyzed	 FADD	 followed	 a	 cosinor-	based	 rhyth-
mometry, which should be taken into consideration when future 

F I G U R E  4 Daily	modulation	of	adult	hippocampal	cell	proliferation	(Ki-	67 + cells).	(a)	Groups	of	treatment:	Zeitgeber	time	(ZT)	2	(n = 5),	
ZT5	(n = 5),	ZT8	(n = 5),	ZT11	(n = 5),	ZT14	(n = 5),	ZT17	(n = 6),	ZT20	(n = 5)	and	ZT23	(n = 6)	(ZT0,	lights-	on	or	inactive	period;	ZT12,	lights-	off	
or	active	period).	Columns	represent	mean ± SD	of	the	number	of + cells	quantified	in	every	8th	section	throughout	the	entire	extent	of	the	
hippocampal dentate gyrus and multiplied by the sampling factor 8 providing an estimate of the total number of positive cells per marker. 
Individual	symbols	are	shown	for	each	rat.	A	cosinor	analysis	was	performed	to	assess	24-	h	rhythmicity.	The	comparison	between	lights	on	
versus	lights	off	was	assessed	with	a	two-	tailed	Student	t-	test.	(b)	Representative	images	showing	individual	Ki-	67 + cells	(brown	labeling	in	
the	blue	granular	layer)	taken	with	a	light	microscope	(63×	objective	lens).	Lower	magnification	images	(5×)	are	shown	in	Figure S1, which 
included	the	square	areas	represented	in	this	magnified	version.	*p < .05;	ns:	no	statistical	significance	(p > .05).
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experiments	are	designed	so	all	samples	are	taken	at	similar	hours	
during	 the	 day.	 Moreover,	 the	 increased	 FADD	 levels	 observed	
during	the	active	time	of	rats	suggested	a	key	role	for	FADD	in	the	
normal physiological functioning of the daily rhythmicity of the ani-
mal. As for the meaning of showing increased levels associated with 
activity, rats that were bred for higher locomotion activity in a novel 
environment	 (bred	 high-	responder,	 bHR;	 Stead	 et	 al.,	 2006)	 also	
showed	significant	basal	differences	in	brain	(cortical	and	hippocam-
pal)	FADD	content,	displaying	bHR	rats'	higher	contents	of	FADD	as	
compared	to	bLR	rats	(García-	Fuster	et	al.,	2009),	which	goes	along	
with the present data. Moreover, although traditionally an apoptotic 
and/or	 neurotoxic	 role	was	 established	 for	 higher	 values	 of	 brain	
FADD,	mainly	 evaluated	 in	 the	 context	of	 an	 acute	modulation	of	
psychostimulant	drugs	(i.e.,	García-	Fuster	et	al.,	2009, 2011),	partic-
ular	conditions	in	which	neurotoxic	effects	were	expected	showed	
normal	 FADD	 levels	 (i.e.,	 following	 repeated	 drug	 treatments:	
García-	Cabrerizo	&	García-	Fuster,	2015;	García-	Fuster	et	al.,	2016, 
2009, 2011)	 and/or	 even	 decreased	 contents	 (e.g.,	 García-	Fuster	
et al., 2007).	Additionally,	in	a	recent	study,	even	though	we	initially	
speculated	an	increase	in	FADD	with	the	presence	and	severity	of	
multiple	age-	related	neuropathologies,	the	results	showed	that	de-
creased	cortical	FADD	protein	was	associated	with	clinical	dementia	
and	cognitive	decline	(Ramos-	Miguel	et	al.,	2017).	Moreover,	during	
the aging process, which is one of the physiological conditions most 
affected	 by	 daily	 rhythm	 alterations	 (reviewed	 by	Duncan,	2020),	
FADD	progressively	decreased	with	age	in	the	hippocampus	of	rats	
(Hernández-	Hernández	et	al.,	2018a).	Overall,	the	fact	that	dysreg-
ulations	of	FADD	have	been	implicated	in	several	behavioral	and/or	
pathological changes, together with the present findings, showing 
the	regulation	of	FADD	in	several	brain	centers	in	a	daily	manner,	as-
cribes an important physiological role for this protein that deserves 
future studies, especially since the potential dysregulation of its 
rhythmicity could lead to the development of future brain disorders.

In	 the	 context	 of	 evaluating	 some	 key	molecular	markers	 that	
might	be	 regulated	 in	parallel	 to	FADD,	we	 first	 explored	ERK1/2	
(ratio	between	p-	ERK	and	t-	ERK),	since	it	has	a	direct	link	with	FADD	
activation	(e.g.,	García-	Fuster	et	al.,	2007).	The	results	showed	that	
the	regulation	of	the	p-	ERK/t-	ERK	ratio	varied	across	brain	regions,	
following	a	cosinor-	based	 rhythmometry	both	 in	prefrontal	 cortex	
and striatum, as compared to hippocampus where no overall changes 
were	 reported.	 In	 particular,	 when	 performing	 the	 comparisons	
combining	all	groups	from	the	lights-	on	versus	lights-	off	periods,	p-	
ERK/t-	ERK	ratio	was	decreased	during	the	lights-	off	period	(higher	
expression	during	the	inactive	time	of	the	rats,	lights	on),	although	it	
was	only	statistically	significant	in	striatum.	Interestingly,	this	course	
regulation	was	opposite	to	the	one	observed	for	FADD,	suggesting	
that	during	their	active	time	(lights	off),	rats	showed	higher	values	
of	FADD	and	lower	values	of	p-	ERK/t-	ERK	ratios.	Prior	studies	that	
evaluated the regulation of circadian genes by components of the 
MAPK	pathway	(e.g.,	Akashi	et	al.,	2008;	Eckel-	Mahan	et	al.,	2008; 
reviewed by Wang et al., 2020)	 also	 showed	 that	 their	 activity	
peaked	 in	certain	brain	 regions	during	the	day	 (inactive	period	for	
the	mice	evaluated;	Eckel-	Mahan	et	al.,	2008).	Moreover,	since	this	

disruption	of	p-	ERK	oscillations	was	linked	to	an	impaired	memory	
persistence	 (Eckel-	Mahan	et	 al.,	2008),	 the	24-	h	modulation	of	 p-	
ERK/t-	ERK	observed	 in	 association	with	 FADD	 fluctuations	might	
be	key	for	normal	physiological	activities	 (e.g.,	Gaspar	et	al.,	2019; 
Goode et al., 2022; McCauley et al., 2020; Patke et al., 2020).

The	 next	 marker	 we	 explored	 was	 Cdk-	5,	 which	 is	 known	 to	
participate in the regulation of circadian clocks under physiological 
conditions	 (e.g.,	 Brenna	 et	 al.,	2019; Kwak et al., 2013; Ripperger 
et al., 2022),	 and	 co-	factors	 p35	 and	 p25,	 needed	 for	 its	 activity	
(Patrick	et	al.,	1999; Tsai et al., 1994).	The	results	showed	no	daily	
regulation	for	Cdk-	5	and	p35,	since	their	levels	remained	unchanged	
across	time.	Conversely,	p25	showed	a	24-	h	regulation	exclusively	
in	striatum,	with	increased	levels	during	the	active	time	of	rats	(i.e.,	
lights	off),	in	line	with	prior	rhythms	in	transcripts	described	across	
the	human	striatum	(Ketchesin	et	al.,	2021).	Prior	results	have	shown	
that	 the	 dysregulation	 of	 Cdk-	5	 activity	 by	 p25	 accumulation	 can	
lead	 to	 neurotoxicity	 and/or	 various	 neurodegenerative	 disorders	
through	 constitutive	 activation	 and	 misplacement	 of	 Cdk-	5	 (e.g.,	
Cheung	 &	 Ip,	 2012).	 However,	 although	 no	 overall	 changes	 were	
observed	in	Cdk-	5	contents	across	time,	Cdk-	5	signaling	in	the	dor-
sal striatum have been shown to alter microcircuits implicating the 
association	 of	 pathologies	 with	 circadian	 behavior	 in	 mice	 (Zhou	
et al., 2022).	These	effects	might	be	mediated	by	the	phosphoryla-
tion	of	certain	proteins	involved	in	regulating	the	24-	h	clock,	since	
Cdk-	5	 has	 been	 shown	 to	 regulate	 the	 function	 of	 CLOCK	 (Kwak	
et al., 2013)	and/or	that	of	Period	2	(PER2;	Brenna	et	al.,	2019)	pro-
teins by direct phosphorylation. These data support prior reports 
suggesting	that	Cdk-	5	 is	critically	 involved	 in	the	regulation	of	 the	
circadian clock and may represent a link to various diseases affected 
by a derailed daily regulation, probably through the activation of its 
co-	factor	 p25,	 and	 in	 parallel	 to	 FADD	 regulation	 (e.g.,	 Ledesma-	
Corvi	&	García-	Fuster,	2022).

Finally,	the	present	study	investigated	whether	cell	proliferation	
in the hippocampus was subjected to a daily modulation. The re-
sults showed that the regulation of hippocampal cell proliferation 
did	not	follow	a	significant	24-	h	modulation,	although	higher	overall	
values	were	observed	during	the	active	time	of	rats	(i.e.,	lights	off).	
In	line	with	our	results,	a	prior	study	in	mice	evaluated	whether	pro-
liferation of hippocampal progenitors was subjected to a daily mod-
ulation,	at	3 h	 intervals	during	24 h,	 and	 found	 that	 the	number	of	
dividing	 cells	 remained	 constant	 through	 the	 light–dark	 cycle	 (van	
der	Borght	et	al.,	2006).	Moreover,	prior	studies	also	found	that	mice	
expressed	higher	 proliferation	 rates	 in	 the	middle	 of	 the	dark	 pe-
riod	 (Bouchard-	Cannon	et	 al.,	2013;	 Fredrich	et	 al.,	2017; Holmes 
et al., 2004; Tamai et al., 2008),	which	suggested	that	activity	was	
associated with increased neurogenesis, similarly to our data, and 
probably	in	relation	to	the	daily	regulation	of	certain	hippocampal-	
dependent	 functions,	 such	as	memory	 (e.g.,	Snider	et	al.,	2018)	or	
neurological	impairments	(e.g.,	Li	et	al.,	2016),	among	others.

Overall,	these	results	demonstrated	a	clear	24-	h	modulation	of	
FADD	in	several	key	brain	regions,	with	a	more	prominent	regulation	
during	the	active	time	of	rats,	and	suggested	a	key	role	for	FADD	in	
the	normal	physiological	functioning	of	the	brain's	daily	rhythmicity,	
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together	with	the	general	opposite	fluctuations	observed	in	p-	ERK/
t-	ERK	ratios.	The	brain	regions	studied	are	widely	known	for	their	
implications in different and highly diverse processes that regulate 
homeostasis, and therefore any disruptions in these biomarkers 
might participate in the development of brain pathologies in which 
they	have	 a	 role	 (e.g.,	major	 depression,	 clinical	 dementia).	 Future	
studies	should	 increase	 the	number	of	 rats	 included	at	each	 time-	
point, since some of our current groups were comprised by few ani-
mals, which was caused by availability at the time of the procedure. 
Moreover, although our study evaluated a relatively small number 
of	markers,	our	hypothesis-	driven	candidates	have	been	previously	
implicated in processes that balance cell death versus neuroplasti-
city for particular psychopathologies. Therefore, knowing their daily 
rhythmicity is key to understanding their potential role and/or target 
regulation for later developing future treatments.
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FIGURE S2.	Representative	images	showing	individual	Ki-	67 + cells	
(brown	 labeling	 in	 the	 blue	 granular	 layer)	 in	 the	 whole	 dentate	
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