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Abstract: In recent years, there has been an increase in the reporting of plastic pollution in the marine
environment and its effects on marine animals, especially bony fish. However, the prevalence and
effect, particularly concerning biomarkers of oxidative stress, in elasmobranchs remain underreported
and unknown. In this study, microplastics were observed in two elasmobranch species from the
Balearic Islands: the small-spotted catshark (Scyliorhinus canicula) with an average of 4.38 ± 1.77 items
per individual, and the blackmouth catshark (Galeus melastomus) with an average of 8.31 ± 2.46 items
per individual. Moreover, for the first time, antioxidant and pro-inflammatory responses were deter-
mined in the digestive tract of individuals of both species. Specifically, the activation of antioxidant
defences, mainly superoxide dismutase activity and glutathione levels, was observed, while the
pro-inflammatory marker myeloperoxidase activity was also greater in individuals with a high abun-
dance of microplastic items. Additionally, a significant increase in glutathione S-transferase activity in
catsharks with high microplastic ingestion was evidenced, suggesting that the detoxification process
was activated. Overall, the results of this study highlight that both catshark species are ingesting
microplastics, which, in turn, are causing physiological effects at a cellular level. Considering this,
continued monitoring of these species should include the presence of microplastics, and the results
from this study can serve as baseline data for future research.

Keywords: catshark; elasmobranch; plastics; antioxidant; inflammation; Balearic Islands

Key Contribution: The occurrence of microplastics (MPs) in Scyliorhinus canicula was 62% and in
Galeus melastomus 83%, with fibres being the most abundant type. The antioxidant response and
inflammatory state in the gut were directly correlated with a greater presence of MPs but there was
no evidence of oxidative damage.

1. Introduction

Pollution in the marine environment due to the presence of solid waste, mainly plastics,
is a growing problem year after year. Worldwide plastic production has increased from
5 million tons in 1960 to 360 million tons in 2018, and it is expected to rise to 1.1 billion
tons in 2050 [1,2]. Recent studies have contributed to the understanding of the impact
and effects of plastics on species and ecosystems. For example, larger plastics become
entangled in the bodies of animals and can be ingested by medium and large-sized animals,
such as marine turtles or cetaceans, resulting in stranding events [3,4]. Smaller plastics,
such as microplastics (MPs), defined as fragments, are smaller than 5 mm [5], can also

Fishes 2024, 9, 55. https://doi.org/10.3390/fishes9020055 https://www.mdpi.com/journal/fishes

https://doi.org/10.3390/fishes9020055
https://doi.org/10.3390/fishes9020055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fishes
https://www.mdpi.com
https://orcid.org/0000-0002-0661-8712
https://orcid.org/0000-0001-5872-5440
https://orcid.org/0000-0001-8656-6838
https://doi.org/10.3390/fishes9020055
https://www.mdpi.com/journal/fishes
https://www.mdpi.com/article/10.3390/fishes9020055?type=check_update&version=3


Fishes 2024, 9, 55 2 of 14

be ingested, causing inflammation and histological damage to the gastrointestinal tract
that could compromise intestinal functions [6], and even cross the intestinal barrier and
accumulate in the cells of the gastrointestinal tissue [7]. In addition, there is evidence
that MPs can reach different tissues such as the liver, muscle, or brain of fish, generating
toxicity [7,8]. This toxicity can be increased by the physical and chemical properties of
plastics as they are capable of adsorbing other contaminants such as polycyclic aromatic
hydrocarbons (PAHs), insecticides, or heavy metals on their surface [9,10].

The intake of MPs is associated with an increase in the production of reactive species
(ROS) that, if not counteracted, can end up generating a situation of oxidative stress. In this
sense, prolonged exposure to oxidative stress can have negative effects on organisms by af-
fecting various organic molecules, such as proteins, lipids, or nucleic acids, thus damaging
cells and tissues [11]. To avoid the damages that these ROS can cause, organisms activate
defence mechanisms including antioxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT), and detoxification mechanisms such as the phase II enzyme glutathione-S-
transferase (GST), among others [12]. The antioxidant and detoxification response induced
by MP exposure has been widely evidenced in many fish species as for example Cyprinodon
variegatus [13], Sparus aurata [14], or Seriola dumerili [15]. Many studies investigating the
potential effects of MP intake have been conducted with teleost fish species and have been
analysed in some meta-analyses [16,17]. However, there are fewer and more recent publica-
tions on the effects of this type of contaminant on cartilaginous fish [18–23]. Although these
studies have shown the presence of MPs in the gastrointestinal tract of different species
of sharks and rays, including members of the genus Scyliorhinus and Galeus, none have
attempted to determine the potential negative effects of ingesting MPs.

Elasmobranchs (sharks, rays, and skates) are among the most vulnerable marine verte-
brates globally [24]. Human activities, especially from overfishing, are driving the decline
in elasmobranch species worldwide with over a third currently at risk of extinction, many
of which have observed a steep decline of 71% in the past few decades and this risk is
even higher for the Northeast Atlantic and the Mediterranean Sea [25–27]. In addition
to overfishing, interactions with plastic pollution in recent years have increasingly been
reported in elasmobranchs, especially in demersal shark species [28]. In the Mediterranean
Sea, reports of ingestion and entanglement in sharks with various degrees of endanger-
ment status have been reported [23,29,30]. Two shark species, the small-spotted catshark
Scyliorhinus canicula and the blackmouth catshark Galeus melastomus, are not only commer-
cially important species in the Balearic Islands in the western Mediterranean Sea, but the
ecological assessment of these species, such as condition index, could be an indication
of ecosystem health [31,32]. S. canicula is the most abundant elasmobranch species on
the continental shelf [33]. S. canicula is an opportunistic scavenger and active predator
that links different food webs and trophic levels in aquatic ecosystems, contributing to
the dynamics and stability of the marine system [34]. G. melastomus is an active predator
of mid-water depths. For its ecological features, this species plays a strategic role in the
energy transfer between pelagic and benthic environments and vice versa [35]. Both sharks
have been proposed as bioindicators for microplastic pollution [22,36]. In terms of spatial
distribution, both species present a bathymetric overlap with S. canicula between 150 and
400 m and G. melastomus occupying the upper slope bottoms shallower than 500 m [33].
Moreover, in terms of protection status, both species are of low concern according to the
IUCN Red List. However, they are also the most frequently non-target caught demersal
shark species on the eastern Iberian Peninsula [37]. Specifically, according to the FAO
(www.fao.org, accessed on 22 December 2023), over 716 tonnes of S. canicula and 228 tonnes
(both live weight) of G. melastomus were captured from 2019 to 2021 in Spain. Given their
abundance in the Mediterranean Sea, demersal behaviour, and generalist feeding habits,
these species could be useful for monitoring spatial and temporal trends in plastic ingestion
in the continental shelf and mid-water depths.

Although the presence of plastic elements has been demonstrated in different species
of sharks, their potential effects are still very little studied [21,38,39]. In this sense and
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according to the information available, the starting hypothesis was that both shark species
will contain MPs in the gastrointestinal tract and that there will be a direct relationship
with stress biomarkers and/or detoxification. Thus, the objective of the present work was
to evaluate the presence of MPs in the intestinal tract of two small sharks from the Balearic
Islands and determine if there are changes in biomarkers of oxidative stress based on the
number of items observed.

2. Materials and Methods
2.1. Fish Sampling and Processing

The specimens of S. canicula and G. melastomus (n = 16 of each species) were wild-
captured by professional fishermen using trawl nets from different locations and depths
(Figure 1) off the South-East coast of Ibiza during April and June 2022. Specimens of S.
canicula were fished between 50–150 m depth and G. melastomus from 150 to 250 m.
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Figure 1. Map of the transects followed by the boats during fishing. The transect closest to the coast
of Ibiza was carried out for fishing S. canicula and the furthest one for G. melastomus. The inset map
indicates the sampling location within the Balearic Islands (marked in red).

After capture, a unique identifier code was assigned to each individual and the
following parameters were recorded: sex, weight (g), and total length of the individual
(LT, cm). The individuals were placed on ice until arrival at the harbour where fish were
immediately processed. The gastrointestinal tract was dissected and weighed and, a small
sample from the end of the intestine was separated and kept at −80 ◦C for biochemical
analysis. The remainder was stored at −20 ◦C for subsequent chemical digestion and
analysis of plastic content.

2.2. Microplastic Analysis

All the gastrointestinal samples were defrosted at room temperature and chemically
digested with 10% KOH (20 mL/g of tissue) for 48 h at 60 ◦C to ensure complete digestion
of the tissue. A full description of the methods is detailed in Solomando et al. (2020) [34].
Filters were observed under the stereomicroscope (Leica MZ16 provided with a camera Le-
ica DFC295, Microsistemas S.L.U., L’Hospitalet de Llobregat, Spain) for MP’s visual sorting.
For each sample, the number of items, type (fragments, fibres), and colour were recorded.

Considering cross contamination of MPs could cause for overestimation of microplas-
tics, several preventive measures were adopted to reduce sample contamination as de-
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scribed in previous studies [40–42]. All surface areas were cleaned with 70% alcohol before
and after all laboratory work. Measurements and the dissection process were conducted at
the laboratory of the Department of Ecology, at the University of the Balearic Islands in
Palma (Mallorca, Balearic Islands).

The polymer composition of a subsample of MPs (n = 11 items) was analysed using
micro-attenuated total reflection micro-Fourier-transform infrared spectroscopy (µ-ATR-
FTIR) with the Hyperion ATR microscope (Bruker Optics, Ettlingen, Germany). FTIR
absorption spectra were recorded in the mid-infrared range of 400–4000 cm−1 and obtained
spectrum compared with commercial and in-house spectral databases.

2.3. Biochemical Analysis

Gut sections of both species were homogenised in ten volumes (w/v) of Tris–HCl
buffer 100 mM, pH 7.5 using a dispersing system (Ultra-Turrax® Disperser, IKA, Staufen,
Germany). Then, the homogenates were centrifuged at 9000× g for 10 min at 4 ◦C (Sigma
3K30, Osterode am Harz, Germany), and supernatants were collected and used for bio-
chemical analyses.

The activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase
(SOD) were measured following previously described protocols [43,44]. The activity of the
detoxification enzyme glutathione S-transferase (GST) was monitored at 314 nm, using
reduced glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) as substrates [45].
Myeloperoxidase (MPO) activity was assessed by guaiacol oxidation, as described by
Capeillere-Blan din (1998) [46]. All enzymatic activities were measured with a Shimadzu
UV-2100 PC (Shidamzu Corporation, Kyoto, Japan) spectrophotometer at 25 ◦C. Reduced
glutathione (GSH) was determined after reaction with 5,5′-dithio-bis (2-nitrobenzoic acid)
solution (DTNB) using a 96-well microplate reader (Epoch Microplate Spectrophotometer,
Bio-Tek, Agilent Technologies, Madrid, Spain) [47]. Lipid peroxidation was determined
using a colorimetric assay kit specific for MDA determination (Merk Life Science S.L.U.,
Madrid, Spain). Finally, the total protein was determined by applying the Bradford reagent
to each sample. These results were used to normalize all biochemical data (Bradford
Protein Assay).

2.4. Statistical Analysis

The potential effects of MP presence in the digestive tract were evaluated using a
statistical analysis package (SPSS 27.0 for Windows®) (IBM® SPSS Inc., Chicago, IL, USA).
Samples from each species were divided into two groups depending on the number of
MPs observed in the gastrointestinal tract according to the median value: low MPs (n = 8)
and high MPs (n = 8) with a median of 2 MPs for S. canicula and 5 MPs for G. melastomus.
Normality and homogeneity were assessed by applying the Shapiro–Wilk test and Levene’s
test, respectively for each species. Statistical differences between the groups were carried
out with a Student’s t-test for unpaired data. The correlations between MPs and biomarkers
were determined using the bivariate correlation Pearson test. The results are shown
as mean ± standard error of the mean (SEM) and p < 0.05 was considered statistically
significant.

3. Results
3.1. Biometric Parameters

A total of 32 fish (n = 16 for each species) were incorporated in the analysis, with an
average length size of 38.8 ± 0.7 cm for S. canicula and 36.3 ± 3.1 cm for G. melastomus, and
a weight of 191.0 ± 9.7 g for S. canicula and 197.8 ± 49.3 g for G. melastomus.

3.2. Microplastics in the Gastrointestinal Tract

MPs were observed in 23 of the 32 (72%) of the gastrointestinal tracts of sharks
analysed, 10 of S. canicula (63%), and 13 of G. melastomus (82%). A total of 203 plastic items
were reported, and of them 70 in S. canicula and 133 in G. melastomus. In S. canicula, a
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specimen with 27 items has been found, while in G. melastomus, the maximum has been
34 items. Some representative images of the MPs found in the gastrointestinal tracts of
sharks are presented in Figure 2.
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Figure 2. Representative images of fibres (A–C) and fragments (D–F) observed in the gastrointestinal
tract of S. canicula and G. melastomus.

Collectively, the sharks presented an average of 6.34 ± 1.5 items/individual in their
gastrointestinal tract. When analysing the species, S. canicula presents an average of
4.38 ± 1.77 items/individual while G. melastomus was practically double that with a value
of 8.31 ± 2.46 items/individual. However, the variability that exists between individuals
implies that there are no statistical differences between the two species (p = 0.189).

By typology, a total of 130 fibres (46 in S. canicula and 84 in G. melastomus) have
been reported for 73 fragments (24 in S. canicula and 49 in G. melastomus). Expressed as
a percentage, fibres predominate with 64% (66% in S. canicula and 63% in G. melastomus).
Regarding colours, blue predominated with 60.1%, followed by black with 29.1%, while
the rest of the colours did not reach 5% (3.9% white, 3.0% transparent, 1.5% red, 1% purple
and pink, and 0.5% orange). These percentages were similar in both species, with 64.3%
blue and 31.4% black in S. canicula and 57.9% blue and 27.8% black in G. melastomus. In
terms of the polymer characterization, due to its small size, 11 items have been able to be
analysed. The polymers determined have been polystyrene and polyethylene (3 items),
silicone (2 items), and nylon, cellophane, and nitrile (1 item).
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To evaluate the possible effects of ingesting MPs, individuals of the two species have
been divided into two groups according to the number of items reported: low content and
high content of MPs. Thus, for S. canicula, the low MPs group presented 0.25 ± 0.17 items
in the gastrointestinal tract and the high MPs group had 8.38 ± 2.83. For G. melastomus, the
low MPs group exhibited 2.29 ± 0.52 items in the gastrointestinal tract and the high MPs
group had 13.0 ± 4.0.

3.3. Biochemical Analysis

The parameters related to oxidative stress determined in the gut of S. canicula and
G. melastomus depending on the presence of MPs are shown in Figure 3. SOD activity
was significantly higher in specimens with a greater presence of MPs in both species
(p < 0.001 for both species), while CAT, although it presented a similar response, the dif-
ferences were not significant. The levels of GSH were also significantly higher in sharks
with more MPs in both species (p = 0.015 for S. canicula and p = 0.001 for G. melastomus). No
significant differences were found in MDA levels.
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Figure 3. Antioxidant enzyme activities, catalase (CAT), and superoxide dismutase (SOD), and
reduced glutathione (GSH) and malondialdehyde (MDA) levels in gut samples of S. canicula and
G. melastomus. * indicates significant differences (p < 0.05) between groups.

The activity of MPO as a biomarker of inflammation is presented in Figure 4. The
greater presence of MPs in the digestive tract of both species is associated with a significantly
higher MPO activity (p < 0.001 for both species).

The activity of GST, as a bioindicator of the detoxification process, is presented in
Figure 5. The enzyme activity was significantly higher in the specimens of the two species
with the highest presence of MPs (p < 0.001 for S. canicula and p = 0.010 for G. melastomus).

When analyzing the correlations between the presence of MPs and the different
biochemical parameters, a similar response is observed in the two species studied (Table 1).
A direct correlation has been reported at the level of 0.01 between the number of MPs and
SOD, MPO, and GST and at the level of 0.05 with GSH levels. No significant correlations
were observed for CAT and MDA.
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Table 1. Bivariate correlations between the number of plastic items and the different biochemical
parameters determined in the digestive tract of G. melastomus and S. canicula.

Scyliorhinus canicula

CAT SOD GSH MDA MPO GST

Plastic items
r 0.150 0.807 ** 0.611 * −0.52 0.750 ** 0.683 **

p 0.579 0.000 0.012 0.850 0.001 0.004

Galeus melastomus

CAT SOD GSH MDA MPO GST

Plastic items
r 0.385 0.564 * 0.535 * 0.199 0.671 ** 0.797 **

p 0.141 0.023 0.033 0.461 0.004 0.000

Abbreviations: CAT, catalase; SOD, superoxide dismutase; GSH, reduced glutathione peroxidase; MDA, malondi-
aldehyde; MPO, myeloperoxidase; GST, glutathione s-transferase. Bivariate Correlations (*) Indicates a correlation
at p < 0.05. (**) Indicates a correlation at p < 0.01.
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In Figure 6, a visual representation of the results from the Pearson’s correlations
highlights an overall positive correlation between the responses of each of the biochemical
markers and plastic items except for CAT and MDA.
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Plastic items r 0.385 0.564 * 0.535 * 0.199 0.671 ** 0.797 ** 
p 0.141 0.023 0.033 0.461 0.004 0.000 

Abbreviations: CAT, catalase; SOD, superoxide dismutase; GSH, reduced glutathione peroxidase; 
MDA, malondialdehyde; MPO, myeloperoxidase; GST, glutathione s-transferase. Bivariate 
Correlations (*) Indicates a correlation at p < 0.05. (**) Indicates a correlation at p < 0.01. 

In Figure 6, a visual representation of the results from the Pearson’s correlations 
highlights an overall positive correlation between the responses of each of the 
biochemical markers and plastic items except for CAT and MDA. 

 

Figure 6. Correlation plots for each biochemical marker (y-axis) in relation to the number of ingested
plastic items (x-axis) for both studied species, G. melastomus (blue) and S. canicula (yellow). Pearson’s
correlation coefficients are displayed in the upper corner of each graphic for the respective species.
Bivariate Correlations (*) Indicates a correlation at p < 0.05. (**) Indicates a correlation at p < 0.01.

4. Discussion

The study reports the ingestion of MPs in the two catshark species S. canicula and
G. melastomus off the coast of Ibiza in the Balearic Islands (Mediterranean Sea). In addition
to the high abundance of MPs in their gastrointestinal tract, present in more than 70%
of specimens analysed, several negative health responses in both species through the
activation of various biomarkers were also observed.

In this study, an average of 4.38 ± 1.77 items was reported in S. canicula and almost
two-fold in G. melastomus. Globally, few studies have reported the interactions between MPs
and elasmobranchs and even fewer examine a biomarker response from the result of MPs
ingestion (Table 2). For example, Janardhanam et al. (2022) reported the ingestion of MPs in
the milk shark Rhizoprionodon acutus of the southeast coast of India, with similar ingestion
rates as S. canicula from the present study [48]. In Malasia, MPs were observed in 100%
of 5 different shark species surveyed with very high concentrations of 29.88 ± 2.34 items
per shark analysed [49]. Regarding the typology of MPs, a greater presence of fibres than
fragments has been observed in the gastrointestinal content of both species, which agrees
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with what was observed in other previous studies [50,51]. For example, Mancia et al.
(2020) [21] reported that 83.3% of the items in S. canicula were fibres while Sbrana et al.
(2022) [36] reported that in G. melastomus fibres accounted for 87% of the items. In this
sense, it has been recognized that the main sources of fibres are washing machines, but
they also come from fishing nets and the textile industry [52,53]. The high prevalence
of fibres may be due to their neutral buoyancy making them susceptible to remaining in
the water column as observed in Rios-Fuster et al. (2022) with a heterogenous vertical
distribution [54]. In terms of hazardous hydrophobic organic chemicals, a critical review
by Koelmans et al. (2016) highlighted that these compounds are in a state of equilibrium
with microplastics in the marine environment [55]. Although, regarding the adsorption of
harmful chemicals from the marine environment by microfibers, there are still a limited
number of reports. In terms of colour, blue was the most common colour observed which
agrees with previous studies such as Valente et al. (2019) [20] and Ory et al. 2017 [56] which
hypothesized that fish can confuse blue items with their most common prey by resembling
a similar morphology in size and colour. Moreover, since both shark species studied are
demersal and with little light incidence, the highest prevalence of blue fibres could also
derive from the great use of blue colour in many plastic products such as bottles or textiles.

Table 2. Summary of recent studies reporting the ingestion of microplastics in elasmobranchs.

Study Study Area Species Total Length
(cm)

Wet Weight
(g)

Sample
Size Nº MPs MPs/Ind. (%)

Mancuso et al. 2022
[38]

Mediterranean
Sea Scyliorhinus canicula 40.4 ± 5.1 212.7 ± 69.4 61 147 2.4 (80.3)

Sbrana et al. 2022
[36] Tyrrhenian Sea Galeus melastomus - - 164 47 1.47 ± 0.28

Alomar et al. 2018
[23]

Mediterranean
Sea Galeus melastomus 29.94 ± 0.81 90.74 ± 6.65 125 21 0.34 ± 0.07

Bellas et al. 2016
[18]

Atlantic Ocean
(Cantabrian

coast)
Scyliorhinus canicula 33.3 ± 2.2 - 24 - 1.20 ± 0.45 (20.80)

Atlantic Ocean
(Gulf of Cadiz) Scyliorhinus canicula 33.3 ± 2.2 - 24 - 1.20 ± 0.45 (20.80)

Atlantic Ocean
(Galician coast) Scyliorhinus canicula 33.3 ± 2.2 - 24 - 1.0 (4.20)

Valente et al. 2019
[20] Tyrrhenian Sea Galeus melastomus 37.7 ± 8.9 157.4 ± 92.0 143 14 4.47 ± 1.10 (40.6)

Scyliorhinus canicula 34.4 ± 8.1 137.9 ± 100.1 75 8 2.50 ± 0.52 (26.7)

Mancia et al. 2020
[21]

Mediterranean
Sea (Strait of

Sicily)
Scyliorhinus canicula 38.3 ± 3.7 189.1 ± 60.2 25 33 1.32 (71)

Mediterranean
Sea (Gulf of
Hammamet)

Scyliorhinus canicula - - 25 26 1.04 (62)

Mediterranean
Sea (Strait of

Sicily)
Scyliorhinus canicula - - 25 6 0.24 (20)

Mediterranean
Sea (Gulf of
Hammamet)

Scyliorhinus canicula - - 25 5 0.2 (16)

Morgan et al. 2021
[22]

South West Coast
of the United

Kingdom
Scyliorhinus canicula - - 200 28 NA (6.50%)

Lopez-Lopez
et al. 2017 [19] Global (review) Galeus spp. - - 2962 - 3 (0.10%)

Scyliorhinus canicula - - 9981 - 7 (0.07%)
Scyliorhinus canicula - - 9981 - 7 (0.07%)

Neves et al. 2015
[57]

Atlantic
(Portuguese

coast)
Scyliorhinus canicula 43 (33–47) 300

(127–433) 17 3 0.12 ± 0.33 (12%)

Scyliorhinus canicula - - 3 3 0.67 ± 0.58 (67%)

Pedà et al. 2020
[42]

Mediterranean
Sea (South

Tyrrhenian Sea)
Scyliorhinus canicula 40.5 ± 6.3 187.4 ± 96.3 27 5 0.19 ± 0.48 (22.2%)

Galeus melastomus 20.7 ± 3.0 24.9 ± 10.8 12 4 0.50 ± 0.80 (33%)
López Martinez
et al. 2020 [58]

Mediterranean
Sea (Alboran Sea) Scyliorhinus canicula 37.29 ± 4.86 145.22 ± 40.65 51 7 0.30 ± 0.45 (9.8%)

Scacco et al. 2022
[59]

Mediterranean
Sea (Tyrrhenian

Sea)
Galeus melastomus

104–200 mm,
201–290 mm and

291–380 mm
- 200 58 0.30 ± 0.45 (15%)

This Study Mediterranean
Sea Scyliorhinus canicula 38.8 ± 0.7 191.0 ± 9.7 16 70 4.38 ± 1.77 (63)

Galeus melastomus 36.3 ± 3.1 197.8 ± 49.3 16 133 8.31 ± 2.46 (82)
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When analysing the presence of MPs in the gastrointestinal tract, no significant differ-
ences were found between the two species, due to the high individual variability. However,
although they have different bathymetric distributions (G. melastomus is found at greater
depths) and feeding methods, both species can be used as bioindicators to monitor the
presence of MPs in slope and deep-sea environments, favoured by the fact that they can be
captured with the same fishing gear [60]. Specifically, G. melastomus is a more generalist–
opportunistic feeder and increases prey diversity as it grows. In a recent study on the
diet content of this species by Sbrana et al. (2022), researchers suggest G. melastomus to
be an ideal candidate sentinel species for monitoring plastics on the seafloors [36]. That
study reported an abundant presence of MPs in the stomach contents of individuals of
G. melastomus and a significant relationship between the abundance of plastics on the
seafloor and the frequency of ingestion was also observed. On the other hand, S. canicula is
considered a more active predator with opportunistic behaviour [61]. In a previous study
by Mancuso et al. (2022), although the relationship between amino acid levels, fatty acid
composition, and plastic consumption in S. canicula was not observed, the authors did
detect differences in plastic characteristics related to specimens’ size and sampling depth,
in addition to higher rates compared to other regions [38]. Moreover, a study by Mancia
et al. (2020) indicated the presence of MP alone is not enough to induce strong activation
of immunity; however, the authors suggest that some types of plastics falling into the
MPs category may be more toxic than others and crucial in the activation of the immune
response [21]. Given the heterogeneous distribution and the increased reporting of MP
ingestion in S. canicula, this species should be regarded as a sentinel species for monitoring
the presence and consequences of plastics in the marine environment.

Considering that the digestive tract is the main entry route for plastic items, this
structure would be the first to show an acute response to the toxicity of this type of
contaminant. In this sense, there are numerous studies where the existence of a relationship
between the intake of MPs and structural and biochemical alterations in the digestive
tract of teleost fish has been demonstrated [15,62]. In fact, in terms of biomarker response,
similar responses were observed in the majority of the biomarkers analysed in both species.
In the present work, an increase in antioxidant defences, especially SOD and GSH, has been
observed in those sharks with a greater presence of MPs in their digestive tract, while the
increase is not significant for CAT. It is interesting to mention that there has been no evidence
of an increase in MDA levels, as a marker of oxidative damage, which would indicate
that antioxidant mechanisms are capable of protecting against oxidative damage [15,41,63].
Similar results have been observed in similar studies carried out on organisms captured
from the natural environment. On the contrary, in studies carried out under controlled
laboratory conditions, increases in markers of oxidative damage have been observed,
probably because exposure to MPs is much greater than in the natural environment [40,64].
In addition to these biomarkers, a significant increase in the detoxification enzyme GST
was observed in both species. These results reflect similar results in previous studies in the
Mullus surmuletus [41] and in the greater amberjack S. dumerili [15], suggesting that a greater
intake of MPs could trigger the induction of the detoxification system. The activation of
detoxification mechanisms can derive from the release of plastic polymers themselves or
other compounds, potentially toxic, adsorbed on their surface [65].

In addition to lower exposure to MPS in the natural environment, it has been evidenced
that MPs retention in the gastrointestinal fish tract is very low, thus most items are expelled
and will not contribute significantly to the induction of oxidative damage [66]. However,
in the present study, there was a greater activity of the MPO in sharks of both species
with a higher MPs content. This increase could be related to a greater pro-inflammatory
state that induces an infiltration of immune cells in the intestinal tissue [14,40]. It has been
evidenced that the passage of MPs through the gastrointestinal tract can generate by direct
contact with the intestinal tissue a certain inflammatory response and even, in studies
under controlled conditions with high exposure to MPs, induce histological damage [67].
In accordance, an increase in pro-inflammatory parameters such as MPO and tumour
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necrosis factor α (TNFα) has been observed in the plasma of Oreochromis niloticus exposed
to polystyrene MPs for 14 days [68]. In another study, exposure of Sparus aurata to a
low-density polyethylene-MPs enriched diet for 90 days increased biomarkers of oxidative
stress and inflammation in the liver, but all these parameters were almost normalized after
30 days of washout period [69]. On the contrary, Sparus aurata reared within an aquaculture
setting, despite a steady increase in MPO activity in blood cells and liver, these variations
were not statistically significant [70]. Altogether reinforces the fact that MPs do not retain in
the gastrointestinal tract and that their elimination from diet allows the recovery of induced
alterations. However, today in the natural environment, it is impossible to think about the
disappearance of MPs. Thus, chronic intake of MPs and other potential pollutants adsorbed
could have impacts on fitness, reducing growth and potential reproduction. In this sense,
studies under controlled and analysed conditions in various meta-analyses have evidenced
the effects of MPs in multiple fish functions [71,72]. However, there is still no evidence of
sharks, so it is an issue that requires future research.

5. Conclusions

Overall, in this study, we report the presence of MPs ingestion in two small catshark
species in addition to the activation of several biomarkers associated with the presence of
these items in their gastrointestinal tracts. The main limitation of the study is the low num-
ber of specimens analysed; however, it has been sufficient to show effects associated with
the ingestion of MPs in both species of sharks studied. This is an important consideration,
especially because access to many shark samples is difficult and is often dependent upon
availability by local fishermen. Considering the combination of the life history traits of
G. melastomus and S. canicula with results from this study, both would be ideal candidates to
monitor for the presence of plastic debris on the seafloor. Furthermore, previous research
has highlighted a multispecies approach to monitoring is necessary [73], and this should be
extended to not only fish species but also elasmobranchs, particularly the need to include
them in the development of long-term monitoring programs for microplastic interactions
in the marine environment, such as the Marine Strategy Framework Directive.
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