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1. Introduction	

The	 outermost	 part	 of	 the	 Sun’s	 atmosphere	 is	
known	 as	 the	 solar	 corona	 (Figure	 1.1)	 and	 is	
composed	of	plasma.	All	of	the	stellar	interiors	and	
atmospheres,	 gaseous	 nebulae,	 and	 much	 of	 the	
interstellar	 hydrogen	 are	 plasmas,	 which	 is	 the	
most	 abundant	 state	 of	 ordinary	 matter	 in	 the	
Universe.		

“A	plasma	 is	 a	quasineutral	 gas	of	 charged	
and	 neutral	 particles	 which	 exhibits	 collective	
behaviour”	(Chen,	1984).	The	movement	of	charge	
carriers	can	generate	electric	fields.	Thus,	it	can	be	
said	that	plasma	is	an	electrically	conducting	fluid	
or	gas.		

On	the	solar	disk	there	are	regions	of	strong	magnetic	field	concentrations.	These	
regions	 are	 known	 as	active	regions	 and	 their	 distribution	 on	 the	 solar	 disk	 is	 shown	
Figure	 1.2.	 The	 size	 of	 these	 regions	 varies	 between	 50	 and	 100.000	 Mm2	 and	 their	
lifetime,	that	varies	up	to	a	few	months,	depends	on	their	size	(Canfield,	2001).	Sunspots	
are	 temporary	phenomena	present	 in	 active	 regions	where	 the	 strong	magnetic	 fields	
come	up	from	within	the	Sun.		

	 Coronal	 loops	(Figure	1.3)	are	magnetic	structures	which	can	be	found	in	active	
regions.	 Following	 Canfield	 (2001),	 “coronal	 loops	 outline	 magnetic	 field	 lines	 along	
which	 the	 ionized	 coronal	 plasma	 is	 forced	 to	 move”.	 These	 structures	 are	 often	
associated	with	pairs	of	sunspots	with	opposite	magnetic	polarity.		

												

	

				

		

	 Figure	1.3:	Coronal	loops	observed	in	the	extreme	UV	band	
captured	by	NASA’s	Transition	Region	And	Coronal	Explorer.	

Figure	1.2:	Solar	active	regions	observed	in	
the	 extreme	 UV	 band	 captured	 by	 NASA’s	
Solar	Dynamics	Observatory.	

	

Figure	1.1:	 	The	solar	corona	during	the	total	
solar	 eclipse	 of	 March	 29,	 2006	 (Koen	 van	
Gorp).	
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Active	region	coronal	loops	are	often	subject	to	external	disturbances	that	excite	

oscillations.	A	particularly	prominent	case	is	that	of	transverse	oscillations:	the	event	is	
usually	triggered	by	a	nearby	flare	and	then	the	loop	sways	laterally	with	its	feet	fixed	at	
the	 photosphere.	 Figure	 1.4	 contains	 a	 schematic	 representation	 of	 the	 triggering	 of	
transverse	oscillations.	

	

Figure	 1.4:	A	possible	mechanism	 for	 the	 excitation	 of	 transverse	 loop	 oscillations	 by	 a	 flare	 (from	Nakariakov	&	
Verwichte	2004).	

Movie	1.1	(https://www.dropbox.com/s/ezj4zip88980fds/Movie%201.1.mov?dl=0)	
gives	 an	 example	 of	 one	 of	 the	 first	 detections	 of	 this	 phenomenon.	 One	 of	 the	main	
features	of	 these	 transverse	 loop	oscillations	 is	 that	 the	 loop	axis	moves	 laterally	with	
respect	to	the	equilibrium	position.	Moreover,	the	oscillation	is	in	the	form	of	a	standing	
wave,	which	implies	that	the	triggering	excites	waves	that	propagate	in	both	directions	
along	the	loop	and	that	these	waves	interfere	to	produce	the	standing	pattern.	
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2. MHD	equations	and	equilibrium	state	
	

2.1	MHD	equations	

Magnetohydrodynamics	 (MHD)	 is	 the	 study	of	 the	motion	of	 compressible	 conducting	
fluids	in	the	presence	of	magnetic	fields.	For	the	description	of	the	interaction	between	a	
plasma	and	a	magnetic	field	it	is	necessary	to	consider	the	plasma	as	a	continuous	fluid.		

The	 set	 of	 the	 ideal	 MHD	 equations	 are	 a	 combination	 of	 the	 electromagnetic	
equations	(Maxwell	equations	and	Ohm’s	law)	and	the	equations	of	fluid	mechanics	(the	
Navier-Stokes	equations	for	a	Newtonian	fluid).	In	order	to	simplify	this	set	of	equations,	
the	MHD	approximation	is	applied.	This	approximation	is	based	on	the	assumption	that	
the	 characteristic	 speeds	 in	plasmas	are	much	 less	 than	 the	 speed	of	 light (Goedbloed	
and	Poedts,	2004;	Priest,	2014).	

Within	 this	 approximation,	 the	 non-relativistic	 ideal	 magnetohydrodynamics	
equations	for	the	motion	of	plasma	in	the	presence	of	a	magnetic	field	can	be	written	as		

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦                                  
𝜕𝜌
𝜕𝑡 + ∇ · 𝜌 𝒗 = 0,                                        (2.1)	

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚             𝜌
𝐷𝒗
𝐷𝑡 = −∇𝑝 +

1
𝜇!

∇×𝑩 ×𝑩,                                         (2.2)	

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛                                      
𝜕𝑩
𝜕𝑡 = ∇× 𝒗×𝑩 ,                                         (2.3)	

𝑆𝑜𝑙𝑒𝑛𝑜𝑖𝑑𝑎𝑙                                                  ∇×𝑩 = 0.                                         (2.4)	

To	model	the	solar	corona	using	the	MHD	equations	it	is	important	to	define	the	
parameter	 β	 that	 gives	 the	 relative	 importance	 of	 the	 plasma	 pressure	(𝑝)	to	 the	
magnetic	pressure	(𝐵!/2𝜇!)	forces.	It	is	defined	as	

𝛽 =
𝑝

𝐵!/2𝜇!
.                                                            (2.5)	

There	are	two	limit	cases:	

• 𝛽 ≪ 1:	 the	 magnetic	 field	 dominates	 the	 dynamics	 of	 the	 plasma	 over	 fluid	
dynamics.		

• 𝛽 ≫ 1:	 the	 magnetic	 forces	 are	 negligible	 and	 the	 motion	 of	 the	 plasma	 is	
determined	by	the	fluid	dynamics.	

The	 particular	 case	 where	𝛽 = 0 is	 known	 as	 cold	 plasma,	 which	 is	 characterized	 by	
∇𝑝 = 𝟎.	In	this	case,	the	momentum	equation	(2.2)	can	be	simplified	as	
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Figure	 2.1:	 Representation	 of	 a	
coronal	loop	as	a	straight	cylinder,	
i.e.,	 with	 its	 curvature	 being	
neglected.	

 𝜌
𝐷𝒗
𝐷𝑡 =

1
𝜇!

∇×𝑩 ×𝑩.                                                        (2.6)	

In	addition,	the	displacement	of	a	plasma	element	and	the	velocity	are	related	by	

𝒗 =
𝐷𝝃
𝐷𝑡 =

𝜕
𝜕𝑡 + 𝒗 · ∇ 𝝃.                                                   (2.7)	

Then,	 the	momentum	equation	 can	 be	written	 in	 terms	 of	 the	 displacement	 vector	 as	
follows		

𝜌
𝐷!𝝃
𝐷𝑡! = +

1
𝜇!

∇×𝑩 ×𝑩.                                                     (2.8)	

	

2.2.	Equilibrium	

In	order	to	model	MHD	waves	in	solar	coronal	loops	we	will	
consider	 the	 loop	as	a	cylinder	of	 radius	𝑎	with	a	constant	
magnetic	 field	𝑩𝟎	applied	 in	 the	 z	 direction	 (Figure	 2.1).	
This	 uniform	 magnetic	 field	 is	 present	 both	 inside	 the	
coronal	 loop	 and	 its	 environment.	 Furthermore,	 we	 will	
assume	 that	 the	 equilibrium	 density,	 denoted	 by	𝜌! ,	 is	
uniform	inside	and	outside	the	cylinder,	with	values	𝜌! 	and	
𝜌! ,	respectively.	From	observations,	the	condition	𝜌! > 𝜌! 	is	
satisfied.		

	 The	Alfvén	speed	is	defined	as	

𝑣!! =
𝐵!
𝜇!𝜌!

.                                  2.9     	

Depending	on	the	value	of	the	density	𝜌!,	we	will	have	an	
internal,	𝑣!" ,	or	external,	𝑣!" ,	Alfvén	speed,	as	shown	in	Figure	2.1.	

Due	to	the	definition	(2.9),	the	internal	and	external	densities	and	Alfvén	speeds	
are	related	through	the	following	equation	

𝜌!  𝑣!"! = 𝜌!  𝑣!"! = 𝜌! 𝑣!!,                                                   2.10 	

where	𝜌!	and	𝑣!	implicitly	contain	the	dependence	of	the	density	and	Alfvén	speed	with	
respect	to	the	distance	to	the	cylinder	axis,	𝑟.	
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3. Linear	MHD	waves	in	a	magnetic	cylinder		

In	this	section	we	present	the	equations	that	describe	MHD	waves	propagating	along	a	
coronal	 loop	modeled	as	a	magnetic	cylinder.	We	also	obtain	expressions	for	the	wave	
frequency	and	the	eigenfunctions,	and	include	some	plots	to	help	interpret	the	physical	
nature	of	these	solutions.	The	material	in	this	section	is	partly	based	on	Ruderman	and	
Erdelyi	(2009).	

3.1.	Linear	wave	equations	

We	 consider	 a	 coronal	 loop	 in	 static	 equilibrium,	 modelled	 as	 a	 straight	 magnetic	
cylinder	 whose	 density	 and	 magnetic	 field	 are	 given	 in	 section	 2.	 We	 now	 consider	
perturbations	about	the	equilibrium	state,	so	that	the	perturbed	variables	are:	

• Magnetic	field:		 	 𝑩 𝒓, 𝑡 = 𝑩𝟎 𝒓 + 𝑩𝟏 𝒓, 𝑡 ,                                         (3.1)							

• Density:		 	 	 𝜌 𝒓, 𝑡 = 𝜌! 𝒓 + 𝜌! 𝒓, 𝑡 ,                                            (3.2)	

• Velocity:	 	 	 𝒗 𝒓, 𝑡 = 𝒗𝟎 𝒓 + 𝒗𝟏 𝒓, 𝑡 ,                                           (3.3)	

• Displacement	vector:		 𝝃 𝒓, 𝑡 = 𝝃𝟎 𝒓 + 𝝃𝟏 𝒓, 𝑡 ,                                            3.4 	

with		𝒗𝟎 𝒓, 𝑡 = 𝝃𝟎 𝒓, 𝑡 = 𝟎.	

Then	 all	 these	 perturbed	 quantities	 can	 be	 introduced	 in	 the	 MHD	 equations.	 In	 the	
derivation	that	 follows	we	will	assume	that	perturbations	are	much	smaller	than	their	
corresponding	 equilibrium	 values,	 i.e.,	 𝑩𝟎 ≫ 𝑩𝟏 	and	𝜌! ≫ 𝜌! .	 This	 allows	 us	 to	
neglect	the	products	of	perturbations.		

• Displacement	vector	(2.7):	

𝒗 =
𝐷𝝃
𝐷𝑡 =

𝜕
𝜕𝑡 + 𝒗 · ∇ 𝝃 ≈

𝜕𝝃
𝜕𝑡 .                                              (3.5)	

• Continuity	equation	(2.1):	

𝜕
𝜕𝑡 𝜌! + 𝜌! = −∇ · 𝜌! + 𝜌!  𝒗 .                                          (3.6)	

Considering	 that	 the	 equilibrium	 density	 is	 much	 bigger	 than	 the	 perturbed	
density		and	independent	of	time,	the	continuity	equation	reduces	to	

𝜕𝜌!
𝜕𝑡 = −∇ · 𝜌! 𝒗 ,                                                         (3.7)	
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and	using	the	definition	of	the	velocity	(3.5)	

𝜕𝜌!
𝜕𝑡 = −∇ · 𝜌!

𝜕𝝃
𝜕𝑡 .                                                       (3.8)	

	

• Momentum	equation	(2.8):	

𝜌! + 𝜌!
𝜕!𝝃
𝜕𝑡! =

1
𝜇!

∇× 𝑩𝟎 + 𝑩𝟏 × 𝑩𝟎 + 𝑩𝟏 .                              (3.9)	

The	magnetic	 field	 in	 equilibrium	has	 the	 general	 form	𝑩𝟎 = 𝐵! 𝑒! .	 In	 addition,	
the	 magnetic	 field	 and	 density	 perturbation	 terms	 are	 much	 smaller	 than	 the	
equilibrium	 terms,	 𝑩𝟎 ≫ 𝑩𝟏 	and	𝜌! ≫ 𝜌!,	 and	 products	 of	 perturbations	 are	
negligible.	Then	the	above	expression	can	be	simplified	to	

𝜌!
𝜕!𝝃
𝜕𝑡! = −

1
𝜇!
𝑩𝟎× ∇×𝑩𝟏 .                                               (3.10)	

We	next	rewrite	this	formula	with	the	help	of	the	relation	∇ 𝑨 · 𝑩 = 𝑨 · ∇ · 𝑩+
𝑩 · ∇ · 𝑨+ 𝑨× ∇×𝑩 + 𝑩× ∇×𝑨 ,	

𝜌!
𝜕!𝝃
𝜕𝑡! = −

1
𝜇!
∇ 𝐵!𝐵! +

1
𝜇!

𝑩𝟎 · ∇ 𝑩𝟏,                                  (3.11)	

where	𝐵!	is	the	z-component	of	𝑩𝟏.	Finally,	this	equation	can	be	expressed	as	

𝜌!  
𝜕!𝝃
𝜕𝑡! = −∇𝑃 +

1
𝜇!

𝑩𝟎 · ∇ 𝑩𝟏,                                           (3.12)	

where	the	total	pressure	perturbation	has	been	defined	as	

𝑃 =
𝐵!𝐵!
𝜇!

.                                                             (3.13)	

• Induction	equation	(2.3):	

𝜕
𝜕𝑡 𝑩𝟎 + 𝑩𝟏 = ∇× 𝒗× 𝑩𝟎 + 𝑩𝟏 .                                   (3.14)	

Using	the	fact	that	the	equilibrium	magnetic	field	is	independent	of	time	and	that	
it	is	much	larger	than	its	perturbation,	 𝑩𝟎 ≫ 𝑩𝟏 ,	equation	(3.14)	leads	to		

𝜕𝑩𝟏
𝜕𝑡 = ∇× 𝒗×𝑩𝟎 .                                                       (3.15)	

This	equation	can	be	simplified	using	expression	(3.5),	 the	relation	∇× 𝑨×𝑩 =
𝑩 · ∇ · 𝑨+ 𝑨 · ∇ · 𝑩 − 𝑨 · ∇ · 𝑩− 𝑩 · ∇ · 𝑨 	and	 the	 fact	 that	 the	 magnetic	
field	in	equilibrium	has	the	general	form	𝑩𝟎 = 𝐵! 𝑒! ,	
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𝜕𝑩𝟏
𝜕𝑡 = 𝐵!

𝜕!𝝃
𝜕𝑧 𝜕𝑡 − 𝐵! ∇ ·

𝜕𝝃
𝜕𝑡  𝑒! .                                      (3.16)	

The	 perturbations	𝑩𝟏	and	𝝃𝟏	can	 be	 decomposed	 in	 two	 different	 components,	
one	in	the	z-direction	and	the	other	one	in	the	perpendicular	direction	to	the	z-axis	

𝑩𝟏 = 𝑩! + 𝐵! 𝑒𝒛,                                                          (3.17)	

𝝃 = 𝝃! + 𝜉! 𝑒! ,                                                            (3.18)	

with		
  𝑩! = 𝐵!  𝑒! + 𝐵!𝑒! ,

 
  𝝃! = 𝜉!  𝑒! + 𝜉!𝑒! .

	

The	decomposition	of	equations	(3.12)	and	(3.16)	in	these	two	components	is	

𝜌!  
𝜕!𝝃
𝜕𝑡! = −∇𝑃 +

1
𝜇!

𝑩𝟎 · ∇ 𝑩𝟏    →   
    
𝜕!𝝃!
𝜕𝑡!

= −
1
𝜌!
∇!𝑃 + 𝑣!!

𝜕!𝝃!
𝜕𝑧!

,        (3.19)
 

                      𝜉! = 0,                               (3.20)
	

𝜕𝑩𝟏
𝜕𝑡 = B!  

𝜕!𝝃
𝜕𝑧 𝜕𝑡 − 𝐵! ∇ ·

𝜕𝝃
𝜕𝑡  𝑒!  →   

           
𝜕𝑩!
𝜕𝑡 = 𝐵!

𝜕!𝝃!
𝜕𝑧 𝜕𝑡 ,                        (3.21) 

   
𝜕𝐵!
𝜕𝑡 = −𝐵! ∇! ·

𝜕𝝃!
𝜕𝑡 ,               (3.22)

	

with	∇!= ∇− !
!"
𝑒! .	

In	 the	 cylindrical	 geometry	 considered	 here,	 perturbed	 quantities	 have	 the	
general	form	

𝑓 𝒓, 𝑡 = 𝑓! 𝒓 + 𝑓! 𝒓, 𝑡 = 𝑓! 𝒓 +  𝑓 𝑟 𝑒!" ,                              (3.23)	

with	𝜙 = −𝜔𝑡 +𝑚𝜑 + 𝑘𝑧.	Here	𝜔	is	the	frequency,	𝑚	is	the	azimuthal	wavenumber	and	
𝑘	is	the	longitudinal	wavenumber.	Hence,	the	solutions	considered	here	are	waves	that	
propagate	 along	 the	 coronal	 loop	 with	 wavelength	𝜆 = 2𝜋/𝑘.	 Equation	 (3.19)	 can	 be	
developed	as	

𝜔!𝝃! =
1
𝜌!

𝜕𝑃
𝜕𝑟 𝑒! +

1
𝑟
𝜕𝑃
𝜕𝜑 𝑒! + 𝑣!! 𝑘! 𝝃!.                                 (3.24)	

The	radial	component	of	this	equation	is	

𝜔!𝜉! =
1
𝜌!
𝜕𝑃
𝜕𝑟 + 𝑣!

! 𝑘!𝜉! .                                                 (3.25)	

Defining		
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𝑘!! =
𝜔! − 𝑘! 𝑣!!

𝑣!!
,                                                       (3.26)	

we	end	up	with	

𝜉! =
1

𝜌! 𝑣!! 𝑘!!
 
𝜕𝑃
𝜕𝑟 .                                                      (3.27)	

	

The	azimuthal	component	of	equation	(3.24)	is	

𝜔!𝜉! =
1
𝜌!
1
𝑟
𝜕𝑃
𝜕𝜑 + 𝑣!

! 𝑘!𝜉! ,                                                (3.28)	

so	that	

𝜉! =
𝑖𝑚

𝑟 𝜌! 𝑣!! 𝑘!!
 𝑃.                                                       (3.29)	

Using	the	general	form	of	equation	(3.23)	for	the	perturbed	quantities	𝐵!	and	𝝃!,	
then	equation	(3.22)	can	be	written	as	follows	

𝐵! = −𝐵! ∇! · 𝝃! .                                                      (3.30)	

We	can	find	an	expression	for	the	total	pressure	using	equations	(3.13)	and	(3.22)	

𝑃 = −𝜌! 𝑣!! ∇! · 𝝃!.                                                       (3.31)	

Using	 the	 radial	 and	 azimuthal	 components	 of	 the	 displacement	 vectors	 (3.27)	 and	
(3.29),	the	above	expression	can	be	written	as	

𝑃 = −𝜌! 𝑣!!  
1
𝑟
𝜕
𝜕𝑟 𝑟 

1
𝜌! 𝑣!! 𝑘!!

𝜕𝑃
𝜕𝑟 +

1
𝑟
𝜕
𝜕𝜑

𝑖𝑚
𝑟 𝜌! 𝑣!! 𝑘!!

 𝑃 .              (3.32)	

So	we	finally	obtain	the	following	ordinary	differential	equation	for	𝑃(𝑟)	

𝑑!𝑃
𝑑𝑟! +

1
𝑟
𝑑𝑃
𝑑𝑟 + 𝑘!! −

𝑚!

𝑟! 𝑃 = 0.                                          (3.33)	
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3.2. Eigenmodes		

Depending	on	the	sign	of	𝑘!!,	equation	(3.33)	is	Bessel’s	differential	equation	(𝑘!! > 0)	or	
the	 modified	 Bessel’s	 differential	 equation	 (𝑘!! < 0).	 Therefore,	 the	 solutions	 of	 this	
equation	are	a	linear	combination	of	Bessel	functions		

𝑃 𝑟 =  
𝐶! 𝐽! 𝑘! 𝑟 + 𝐶! 𝑌! 𝑘!  𝑟 ,       𝑘!! > 0,                             (3.34)

                             
𝐶! 𝐼! 𝜅!  𝑟 + 𝐶! 𝐾! 𝜅!  𝑟 ,      𝑘!! < 0,                             (3.35)

	

where	𝜅!! = −𝑘!! = −!!!!! !!
!

!!
! 	and	𝐶!,	𝐶!,	𝐶!,	𝐶!	are	arbitrary	constants.	Furthermore,	the	

functions	𝐽!(𝑟),	𝑌!(𝑟),	𝐼! 𝑟 ,	𝐾!(𝑟)	are	the	Bessel’s	and	the	modified	Bessel’s	functions	
of	first	and	second	kind.	

Since	the	equilibrium	density	is	different	inside	and	outside	the	cylinder,	𝜌! ≠ 𝜌! ,	
the	Alfvén	speed	will	also	be	different	inside	and	outside	the	cylinder	and,	therefore,	the	
variable	𝑘!!	takes	the	values	

 
𝑘!! =

𝜔! − 𝑘!𝑣!"!

𝑣!"!
= −𝜅!!,          𝑟 ≤ 𝑎,                                  (3.36)

𝑘!! =
𝜔! − 𝑘!𝑣!"!

𝑣!"!
= −𝜅!!,           𝑟 > 𝑎,                                 (3.37)

	

Therefore,	for	a	fixed	longitudinal	wavenumber,	𝑘,	depending	on	the	value	of	the	
frequency,	𝜔,	 there	will	be	three	different	regions,	schematically	represented	 in	Figure	
3.1.	

	
	 	 	 						𝜔																			𝑘!!																															𝑘!!	

	 	 	 	 	 > 0																												> 0	

	 	 	 𝑘 𝑣!" 	

	 	 	 	 	 > 0																												< 0	

	 	 	 𝑘 𝑣!" 	

	 	 	 	 	 < 0																												< 0	

	 	 	 								0	

	
Figure	3.1:	Frequency	regions	for	different	values	of	𝑘!!.	
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To	find	the	solution	for	𝑃(𝑟)	in	each	region,	the	non-divergence	of	the	pressure	is	
imposed	when	𝑟 → 0	and	when	𝑟 → ∞.	The	pressure	 in	each	 region	 inside	and	outside	
the	cylinder	is	presented	in	Table	3.1	

𝜔	 𝑟 ≤ 𝑎	 𝑟 ≥ 𝑎	

0 < 𝜔 < 𝑘 𝑣!" 	 𝐶!!  𝐼! 𝜅!  𝑟 	 𝐶!!  𝐾!(𝜅!  𝑟)	

𝑘 𝑣!" < 𝜔 < 𝑘 𝑣!" 	 𝐶!!  𝐽! 𝑘!  𝑟 	 𝐶!!  𝐾!(𝜅!  𝑟)	

𝑘 𝑣!" < 𝜔	 𝐶!!  𝐽! 𝑘!  𝑟 	 𝐶!!  𝐽! 𝑘!  𝑟 + 𝐶!!  𝑌!(𝑘!  𝑟)	
Table	3.1:	Radial	variation	of	the	total	pressure	𝑃(𝑟),	in	each	frequency	region.	

In	Table	 3.1	𝐶!! ,	𝐶!! ,	𝐶!! ,	𝐶!! ,	𝐶!! 	are	 arbitrary	 constants.	 To	 find	 restrictions	 on	
their	 value,	 continuity	 of	 the	 perturbed	 pressure	 and	 the	 radial	 component	 of	 the	
displacement	vector	at	𝑟 = 𝑎	must	be	 imposed.	Each	frequency	region	is	now	analysed	
separately.	

1) For	the	region	0 < 𝜔 < 𝑘 𝑣!" 	the	continuity	of	𝑃(𝑟)	and	𝜉! 𝑟 	at	𝑟 = 𝑎	implies		
	

 
                      𝐶!!  𝐼! 𝜅!𝑎 = 𝐶!!  𝐾! 𝜅!𝑎 ,                                           (3.38)
−1

𝜌!  𝑣!"!  𝜅!
𝐶!!  𝐼!! 𝜅!𝑎 =

−1
𝜌!  𝑣!"!  𝜅!

𝐶!!  𝐾!! 𝜅!𝑎 .                              (3.39) 	

	
This	 is	 a	 homogeneous	 system	 of	 linear	 algebraic	 equations	 for	𝐶!! 	and	𝐶!! .	 In	
order	to	have	a	non-trivial	solution,	its	determinant	must	be	zero.	This	condition	
leads	to	
	

𝐼′!(𝜅!𝑎)
𝜅!  𝐼!(𝜅!𝑎)

−
𝐾!! 𝜅!𝑎
𝜅!  𝐾! 𝜅!𝑎

= 0.                                         (3.40)	

	
The	modified	Bessel	 function	 of	 first	 kind	𝐼!(𝑟)	and	 its	 derivative	𝐼!′(𝑟)	

are	always	positive.	Moreover,	the	modified	Bessel	function	of	second	kind	𝐾!(𝑟)	
is	positive	but	its	derivative	𝐾!′(𝑟)	is	negative.	Thus,	it	is	easy	to	prove	that	the	
equation	 (3.40)	 has	 no	 solution.	 In	 other	 words,	 the	 coronal	 loop	model	 used	
here	cannot	support	waves	with	0 < 𝜔 < 𝑘 𝑣!" .	

	
	

2) In	 the	 second	 region,	𝑘 𝑣!" < 𝜔 < 𝑘 𝑣!" ,	 the	 continuity	 constraint	 gives	 the	
system	of	equations	
	

 
                   𝐶!!  𝐽! 𝑘!𝑎 = 𝐶!!  𝐾! 𝜅!𝑎 ,                                          (3.41)

1
𝜌!  𝑣!"!  𝑘!

𝐶!!  𝐽!! 𝑘!𝑎 =
−1

𝜌!  𝑣!"!  𝜅!
𝐶!!  𝐾!! 𝜅!𝑎 ,                          (3.42) 	

	
This	is	a	homogeneous	system	of	linear	algebraic	equations	for	𝐶!! 	and	𝐶!! .	As	in	
the	 previous	 case,	 its	 determinant	 must	 be	 zero.	 Therefore,	 it	 leads	 us	 to	 the	
following	condition	
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𝐽!′(𝑘!𝑎)
𝑘!  𝐽!(𝑘!𝑎)

+
𝐾!′(𝜅!𝑎)
𝜅!  𝐾!(𝜅!𝑎)

= 0.                                         (3.43)	

	
In	this	case,	equation	(3.43)	has	a	solution,	which	allows	one	to	obtain	𝜔	

once	𝑚	and	𝑘	are	imposed.	This	is	called	the	dispersion	relation.	

	

3) The	continuity	of	𝑃(𝑟)	and	𝜉! 𝑟 	at	𝑟 = 𝑎	in	the	last	region,	𝑘 𝑣!" < 𝜔,	implies	
	

 
                       𝐶!!  𝐽! 𝑘!𝑎 = 𝐶!!  𝐽! 𝑘!𝑎 + 𝐶!!  𝑌! 𝑘!𝑎 ,                            (3.44)

1
𝜌!  𝑣!"!  𝑘!

𝐶!!  𝐽!! 𝑘!𝑎 =
1

𝜌!  𝑣!"!  𝑘!
𝐶!!  𝐽!! 𝑘!𝑎 + 𝐶!!  𝑌′!(𝑘!𝑎) ,            (3.45)

	

	
In	the	present	case	we	have	only	two	equations	for	the	three	unknowns	𝐶!! ,	𝐶!! 	
and	𝐶!! .	One	can	then	consider	one	of	these	three	constants	as	a	truly	arbitrary	
parameter	 and	 use	 equations	 (3.44)	 and	 (3.45)	 to	 express	 the	 other	 two	 as	 a	
function	of	the	first	one.	Using	this	procedure,	one	can,	for	example,	cast	𝐶!! 	and	
𝐶!! 	in	terms	of	𝐶!! .	Then,	we	obtain	

𝐶!! =
𝑘!  𝐽!! 𝑘!𝑎  𝑌! 𝑘!𝑎 − 𝑘!  𝐽! 𝑘!𝑎  𝑌′!(𝑘!𝑎)
𝑘!  𝐽!! 𝑘!𝑎  𝑌! 𝑘!𝑎 − 𝑘!  𝐽! 𝑘!𝑎  𝑌′!(𝑘!𝑎)

 𝐶!! ,                    (3.46)
  ·

𝐶!! =
𝑘!  𝐽! 𝑘!𝑎  𝐽!! 𝑘!𝑎 − 𝑘!  𝐽!! 𝑘!𝑎  𝐽!(𝑘!𝑎)
𝑘!  𝐽!! 𝑘!𝑎  𝑌! 𝑘!𝑎 − 𝑘!  𝐽! 𝑘!𝑎  𝑌′!(𝑘!𝑎)

 𝐶!! .                    (3.47)

	

	
Obviously	this	 is	not	the	only	way	to	write	two	of	 the	three	constants	as	

functions	of	the	third	one.	In	fact,	in	section	3.6.2	we	will	make	a	different	choice.	
	
It	is	worth	noting	that,	in	the	present	case,	we	do	not	obtain	a	dispersion	

relation.	 This	 means	 that,	 once	𝑚	and	𝑘	are	 fixed,	 any	 value	 of	 the	 frequency	
above	𝑘 𝑣!" 	is	 a	 solution	 to	 the	 problem.	 For	 this	 reason,	 the	 solutions	 in	 this	
frequency	region	are	called	“continuous”,	whereas	those	in	the	range	𝑘 𝑣!" < 𝜔 <
𝑘 𝑣!" 	are	called	“discrete”.		
	

3.3.	Kink	mode	

The	preceding	 treatment	of	 the	 linear	 solutions	 to	 the	MHD	wave	 equations	has	been	
done	for	any	value	of	the	azimuthal	wavenumber,	𝑚.	Transverse	loop	oscillations	have	
been	 abundantly	 reported	 (see	 section	 1)	 and	 for	 this	 reason	we	 next	 concentrate	 in	
these	events.	Except	for	the	𝑚 = 1	modes,	all	solutions	leave	the	loop	axis	undisturbed	
and	therefore	only	𝑚 = 1	waves	are	of	interest	here.	These	solutions	deform	the	loop	in	
the	 form	of	a	kink	(see	Figure	3.2).	When	two	kink	waves	of	equal	amplitude	travel	 in	
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opposite	 directions	 the	 standing	 pattern	 of	 Figure	 3.3	 is	 generated.	 The	 observed	
standing	transverse	loop	oscillations	are	often	interpreted	as	a	standing	kink	wave	with	
only	two	nodes,	at	the	loop	feet,	and	a	single	maximum,	at	the	loop	top.	In	the	rest	of	this	
work	we	thus	concentrate	in	the	𝑚 = 1	case.	

										

	

	

	

	

	

	

3.4.	Dimensionless	variables	and	functions	

To	 plot	 the	 results	 we	 have	 obtained	 we	 will	 use	 variables	 and	 functions	 without	
dimensions.	To	obtain	dimensionless	variables	and	functions	defined	in	Table	3.2	we	use	
the	 following	 quantities:	𝑣!" 	(internal	 Alfvén	 speed),	𝜌! 	(internal	 density)	 and	𝑎	(tube	
radius).			

Variables	 	 Functions	

Length	 𝑙 =
𝑙
𝑎	

	
Pressure	 𝑃 =

𝑃
𝜌!𝑣!"!

	

Speed	 𝑣 =
𝑣
𝑣!"
	 	 Magnetic	field	 𝐵 =

𝐵
𝐵!
	

Wavenumber	 𝑘 = 𝑘𝑎	
	 Energy	per	unit	

volume	 𝐸 =
𝐸

𝜌!𝑣!"!
	

Time	 𝑡 = 𝑡
𝑣!"
𝑎 	

	 	 	

Frequency	 𝜔 = 𝜔
𝑎
𝑣!"
	 	 	 	

Table	3.2:	Dimensionless	variables	and	functions.	

Figure	3.3:	Straight	magnetic	cylinder	perturbed	by	
two	kink	waves	travelling	in	opposite	directions.	

Figure	3.2:	Shape	of	a	loop	disturbed	by	a	kink	wave.	
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3.5.	Dispersion	relation	

We	 can	 represent	 the	 allowed	 frequency	 values	 with	 the	 dimensionless	 variables	
defined	in	Table	3.2.	The	allowed	frequency	values	are	represented	in	Figure	3.4	for	the	
density	ratio	𝜌!/𝜌! = 1/4	(which	is	equivalent	to	𝑣!"/𝑣!" = 2)	and	𝑚 = 1.	

																																																								

𝑘 𝑣!" < 𝜔                                      	

                  𝑘 𝑣𝐴𝑒 < 𝜔				                𝑘 𝑣𝐴𝑖 < 𝜔 < 𝑘 𝑣𝐴𝑒	
𝑘 𝑣!" < 𝜔 < 𝑘 𝑣!"                                	

                                                0 < 𝜔 < 𝑘 𝑣𝐴𝑖   																																														0 < 𝜔 < 𝑘 𝑣!"	

	

	
	 In	Figure	3.4	we	 can	observe	 the	 three	 frequency	 regions,	 separated	by	dashed	
lines.	Furthermore,	in	each	region	the	different	allowed	frequency	values	are	shown.	As	
we	have	found	in	the	previous	subsection	there	cannot	be	waves	with	0 < 𝜔 < 𝑘 𝑣!" .	On	
the	other	hand,	in	the	region	𝑘 𝑣!" < 𝜔	there	is	a	continuous	of	solutions	such	that	for	a	
fixed	𝑚	and	𝑘	any	value	of	the	frequency	above	𝑘 𝑣!" 	is	allowed;	for	this	reason	this	area	
is	shaded.		Finally,	in	the	central	region	the	solution	to	the	dispersion	relation,	equation	
(3.43),	 is	 plotted	with	 a	 solid	 line.	 It	 is	worth	mentioning	 that	 the	 dispersion	 relation	
possesses	 more	 solutions.	 The	 one	 displayed	 in	 Figure	 3.4	 is	 the	 fundamental	 mode,	
which	is	the	most	relevant	solution	since	it	contains	the	largest	spatial	scales	and	so	it	is	
the	most	easily	excited	by	a	perturbation.	Hence,	in	this	region,	for	each	𝑘	there	is	only	
one	allowed	value	for	frequency	given	by	equation	(3.43).	
	
	 The	 right	 panel	 of	 Figure	3.4	 is	 included	 here	 because	 observations	 of	 coronal	
disturbances	often	allow	to	determine	the	phase	speed,	and	so	this	panel	can	be	used	to	
compare	the	results	of	the	simple	cylinder	model	with	the	detected	phase	velocities.		
	
	
3.6.	Eigenfunctions		
	

In	this	section	we	will	analyze	the	two	regions	that	have	allowed	frequency	values.	

3.6.1.	Region	1	

Such	 as	 we	 have	 just	 described,	 in	 the	 first	 region,	𝑘 𝑣!" < 𝜔 < 𝑘 𝑣!" ,	 there	 is	 a	
dispersion	relation	(3.43)	which	for	a	fixed	𝑘	and	𝑚	gives	us	a	value	of	frequency	𝜔.		

Figure	3.4:	Plot	of	the	frequency	(left)	and	the	phase	velocity	(right)	for	the	various	wave	modes	supported	by	a	
magnetic	cylinder.	
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In	order	to	simplify	the	expressions	of	the	pressure	and	the	displacement	vector,	
the	arbitrary	constants	𝐶!! 	and	𝐶!! 	are	defined	such	that	the	radial	displacement	at	 the	
loop	 boundary	 is	𝜉! 𝑟 = 𝑎 = 1 .	 	 We	 will	 obtain	 these	 two	 constants	 using	 the	
expression	 of	 the	 pressure	 (Table	 3.1)	 and	 the	 definition	 of	 the	 radial	 displacement	
(3.27).	

 
𝐶!! =

𝜌!𝑣!"! 𝑘!
𝐽!! (𝑘!𝑎)

,                                                            (3.48)

𝐶!! = −
𝜌! 𝑣!"!  𝜅!
𝐾′! 𝜅!𝑎

.                                                    (3.49) 
	

Using	the	above	constants,	the	pressure	in	this	frequency	region	for	a	given 𝑘	and	𝑚	is	

𝑃 𝑟 =
  
𝜌!𝑣!"! 𝑘!
𝐽′! 𝑘!𝑎

 𝐽! 𝑘!𝑟 ,           𝑟 ≤ 𝑎,                                   (3.50)
 

−
𝜌!𝑣!"! 𝜅!
𝐾!! (𝜅!𝑎)

 𝐾! 𝜅!𝑟 ,       𝑟 > 𝑎.                                   (3.51)
 	

Then,	the	perturbed	pressure	(3.50	and	3.51)	and	the	radial	(3.27)	and	azimuthal	(3.29)	
components	of	the	displacement	vector	can	be	represented	for	fixed	values	of	𝑘	and	𝑚.	
They	 are	 plotted	 in	 the	 following	 figures	 for	 the	 same	 parameter	 values	 used	 before,	
namely	𝜌!/𝜌! = 1/4	and	𝑚 = 1,	and	for	two	different	values	of	𝑘.	The	frequency	in	each	
case	 is	calculated	 through	 the	dispersion	relation	(3.43)	before	 the	eigenfunctions	can	
be	plotted.	

	
	

	
Figure	 3.5:	 Perturbed	 pressure	 and	 displacement	 vector	 for  𝑘𝑎=0.1,	 which	 corresponds	 to	 the	 longitudinal	
wavelength	𝜆 = 20𝜋𝑎. The	eigenfunctions	have	been	normalized	so	that	the	radial	displacement	is	equal	to	one	at	the	
loop	boundary	(𝑟 = 𝑎).	
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Figure	3.6:	Perturbed	pressure	and	displacement	vector	for	𝑘𝑎=2,	which	corresponds	to	the	longitudinal	wavelength	
𝜆 = 𝜋𝑎. The	eigenfunctions	have	been	normalized	so	that	the	radial	displacement	is	equal	to	one	at	the	loop	boundary	
(𝑟 = 𝑎).	

	
	

	

In	subsection	3.2	we	imposed	continuity	of	the	perturbed	pressure	and	the	radial	
component	of	the	displacement	vector.	Observing	Figures	3.5	and	3.6	we	can	verify	that	
the	continuity	condition	is	satisfied.	On	the	other	hand,	the	azimuthal	displacement	has	
a	discontinuity	at	the	loop	boundary	𝑟 = 𝑎.	Such	a	discontinuity	is	possible	because	the	
MHD	 equations	 impose	 no	 restriction	 on	 the	 behaviour	 of	𝜉!	at	 the	 loop	 boundary.	
Furthermore,	we	can	verify	that	the	perturbed	pressure	and	displacement	vector	vanish	
as	𝑟 → ∞.	

The	radial	and	azimuthal	displacement	components	in	Figure	3.5	are	constant	for	
𝑟 ≤ 𝑎.	This	implies	that,	for	𝑘𝑎 = 0.1,	the	entire	cylinder	moves	as	a	rigid	solid.	In	Figure	
3.6	 these	 two	 functions	 are	 non-constant	 for	𝑟 ≤ 𝑎.	 Therefore,	 for	𝑘𝑎 = 2	any	 point	 of	
the	 cylinder	 moves	 with	 different	 radial	 and	 azimuthal	 velocity	 and,	 as	 a	 result,	 the	
internal	density	distribution	changes	in	the	course	of	the	loop	oscillations.		

The	perturbed	pressure	in	both	cases	has	a	similar	behaviour	but	in	one	of	them	
it	 increases	 linearly	 for	𝑟 ≤ 𝑎	(Figure	3.5).	This	 is	caused	by	the	cylinder	behaving	as	a	
solid	body	for	𝑘𝑎 = 0.1.	In	the	other	case,	the	cylinder	does	not	behave	as	a	solid	body	so	
the	perturbed	pressure	does	not	increase	linearly	(Figure	3.6).		
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In	both	cases,	the	azimuthal	displacement	has	a	discontinuity	and	a	sign	change	
at	𝑟 = 𝑎.	This	fact	means	that	at	the	loop	boundary	the	interior	and	exterior	particles	are	
moving	in	opposite	directions.	Hence,	there	is	a	velocity	shear	at	the	loop	boundary.		

	

	

3.6.2.	Region	2	

	 In	the	second	region,	𝑘 𝑣!" < 𝜔,	there	is	a	continuous	of	solutions. As	in	the	first	
region,	we	chose	a	normalization	such	that	𝜉!(𝑟)	equals	one	at	the	 loop	boundary	(𝑟 =
𝑎).	We	then	obtain	

𝐶!! =
𝜌! 𝑣!! 𝑘!
𝐽!! (𝑘!𝑎)

.                                                          (3.52)	

Then	the	other	two	constants	are	

  

𝐶!! =  𝜌! 𝑣!!  
𝑘!
𝐽!(𝑘!𝑎)
𝐽!! (𝑘!𝑎)

− 𝑘!
𝐽!(𝑘!𝑎)
𝐽!! (𝑘!𝑎)

𝑌! 𝑘!𝑎 − 𝑌!! (𝑘!𝑎)
𝐽!(𝑘!𝑎)
𝐽!! (𝑘!𝑎)

,                             (3.53)

 

𝐶!! = 𝜌! 𝑣!! 
𝑘!
𝐽!(𝑘!𝑎)
𝐽!! (𝑘!𝑎)

− 𝑘!
𝑌!(𝑘!𝑎)
𝑌!! (𝑘!𝑎)

𝐽! 𝑘!𝑎 − 𝐽!! (𝑘!𝑎)
𝑌!(𝑘!𝑎)
𝑌!! (𝑘!𝑎)

.                             (3.54)

	

Using	the	definitions	(3.52),	(3.53)	and	(3.54)	the	pressure	in	this	frequency	region	can	
be	expressed	as	follows	

𝑃 𝑟 =
 𝐶!!  𝐽! 𝑘!𝑟 ,                                       𝑟 ≤ 𝑎,                 (3.55)

 
 𝐶!!  𝐽! 𝑘!𝑟 + 𝐶!!  𝑌! 𝑘!𝑟 ,          𝑟 > 𝑎.                 (3.56)

	

Given	 that	 in	 this	 case	 there	 is	 a	 continuous	of	 solutions,	we	 can	 represent	 the	
pressure	(3.55	and	3.56)	and	the	radial	(3.27)	and	azimuthal	(3.29)	components	of	the	
displacement	 vector	 for	 any	 value	 of	𝜔	and	𝑘	satisfying	𝑘 𝑣!" < 𝜔.	 They	 are	 plotted	 in	
the	 following	 figures	 for	 the	 same	 parameter	 values	 as	 before	 and	 for	 three	 different	
values	of	𝑘	and	𝜔.	
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Figure	3.7:	Perturbed	pressure	and	displacement	vector	for	𝑘𝑎=0.1	and	𝜔𝑎/𝑣!" = 2.5.	The	eigenfunctions	have	been	
normalized	so	that	the	radial	displacement	is	equal	to	one	at	the	loop	boundary	(𝑟 = 𝑎).	

	
	
	

	 	

	
Figure	3.8:	Same	as	Figure	3.7	for 𝑘𝑎=1	and	𝜔𝑎/𝑣!" = 2.5.		
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Figure	3.9:	Same	as	Figure	3.7	for 𝑘𝑎=1	and	𝜔𝑎/𝑣!" = 5.	

	 In	 the	 three	 Figures	 3.7,	 3.8	and	 3.9	 the	 continuity	 condition	 on	 the	 perturbed	
pressure	 and	 the	 radial	 component	 of	 the	 displacement	 vector	 imposed	 in	 subsection	
3.2	 is	 satisfied.	 Furthermore,	 in	 the	 three	 cases	 the	 angular	 displacement	 has	 a	
discontinuity	in	𝑟 = 𝑎,	which	produces	a	velocity	shear	at	the	loop	boundary.	Moreover,	
all	 the	 functions	 are	 radially	 oscillatory	 in	 the	 loop	 environment	 because	 of	 their	
dependence	on	the	Bessel	functions	J	and	Y.	

	The	quantity	𝜅! 	plays	the	role	of	the	radial	wavenumber.	For	the	values	of	𝑘	and	
𝜔	used	 in	Figures	3.7,	3.8	and	3.9	we	obtain	respectively	𝜅!𝑎 = 1.25, 0.75	and	2.29.	The	
smallest	(largest)	of	these	three	values	corresponds	to	Figure	3.8	(3.9),	which	presents	
the	longest	(shortest)	radial	wavelength.	
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4.	Linear	Wave	Energy	

	
In	 this	 section	 we	 analyze	 the	 wave	 energy	 density,	 given	 by	 the	 sum	 of	 kinetic	 and	
magnetic	 energy	 densities.	 We	 also	 obtain	 expressions	 for	 the	 average	 of	 the	 wave	
energy	over	one	period,	one	wavelength	and	one	full	turn	around	the	cylinder.	In	order	
to	interpret	the	solutions	we	finally	plot	the	results.	The	material	in	this	section	is	partly	
based	on	Goossens	et	al.	(2013)	and	Moreels	et	al.	(2015).	

4.1.	Energy	equation	

We	follow	Walker	(2005)	and	write	the	energy	equation	as	

𝜕𝑊
𝜕𝑡 + ∇ · 𝑸 = 0,                                                            (4.1)	

where	𝑊(𝒓, 𝑡)	is	 the	 wave	 energy	 density	 and	𝑸(𝒓, 𝑡)	is	 the	 wave	 energy	 flux.	 These	
quantities	are	defined	as	

 
𝑊 =

1
2
𝜌!𝑣! +

𝑝!

2𝜌!𝑐!!
−

1
2𝑐!!

𝑔!𝜌! +
1
2
𝑔
𝑑𝜌!
𝑑𝑧

𝜉!! +
𝐵!

2𝜇!
,                     (4.2)

𝑸 = 𝑝𝒗+
1
𝜇!
𝑩×𝑬.                                                                                           (4.3)

	

Furthermore,	the	velocity	at	which	wave	energy	propagates	is	defined	as	the	ratio	of	the	
above	two	quantities	

𝑹 =
𝑸
𝑊 .                                                                    (4.4)	

The	meaning	of	the	terms	in	the	wave	energy	density	(4.2)	is	

• Kinetic	energy	density	

𝐾𝐸 =
1
2𝜌!𝒗

!,                                                               (4.5)	

• Magnetic	energy	density	

𝑀𝐸 =
𝑩!

2𝜇!
,                                                                  (4.6)	
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• Pressure	(or	internal)	energy	density		

𝐼𝐸 =
𝑝!

2𝜌!𝑐!!
,                                                                (4.7)	

• Energy	density	associated	to	gravitational	field	

𝐺𝐸 = −
1
2𝑐!!

𝑔!𝜌! +
1
2𝑔

𝑑𝜌!
𝑑𝑧 𝜉!!.                                            (4.8)	

In	our	treatment	of	the	equilibrium	and	wave	propagation	we	have	neglected	the	plasma	
pressure	and	gravity	in	the	momentum	and	energy	equations	so	that	we	will	neglect	the	
last	 two	 energy	 density	 terms,	 (4.7)	 and	 (4.8).	 Therefore,	 we	 will	 consider	 the	 wave	
energy	density	as	the	sum	of	kinetic	and	magnetic	energy	density	

𝑊(𝑟, 𝑧,𝜑, 𝑡) = 𝐾𝐸(𝒓, 𝑡)+𝑀𝐸(𝒓, 𝑡) =
1
2𝜌!𝒗

! +
𝑩!

2𝜇!
.                         (4.9)	

	

4.2.	Averaged	wave	energy	density	

We	will	compute	the	average	of	the	wave	energy	over	one	period	(𝑇),	one	wavelength	
(𝜆)	and	one	full	turn	around	the	cylinder	(2𝜋)	

𝑊 𝑟 =
1

2𝜋𝑇𝜆 𝑊 𝑟, 𝑧,𝜑, 𝑡 𝑑𝑡 𝑑𝑧 𝑑𝜑
!!

!

!

!

!

!
.                          (4.10)	

Perturbed	 quantities	 𝜉! , 𝜉! ,𝐵! ,𝐵! ,𝐵! ,… 	have	 the	 general	 form	 𝑓 𝒓, 𝑡 = 𝑓! 𝒓 +
𝑓!(𝒓, 𝑡)	given	by	expression	(3.23)	where	only	the	real	part	of	𝑓!(𝒓, 𝑡)	is	kept	

𝑅𝑒 𝑓! =
1
2 𝑓! + 𝑓!

∗ =
1
2 𝑓(𝑟)𝑒!" + 𝑓∗(𝑟)𝑒!!" ,                          (4.11)	

with	𝜙 = −𝜔𝑡 +𝑚𝜑 + 𝑘𝑧 .	 Both	𝐾𝐸 	and	𝑀𝐸 	contain	 squares	 of	 perturbed	 variables,	
which	can	be	written	as		

𝑓! + 𝑅𝑒(𝑓!) ! = 𝑓!! + 2𝑓!𝑅𝑒 𝑓! + 𝑅𝑒 𝑓! !,                               (4.12)	

where	

𝑅𝑒 𝑓!
! =

1
4 𝑓!𝑒!!" + 𝑓∗

!
𝑒!!!" + 2𝑓𝑓∗ .                              (4.13)	

Therefore,	 when	 averaging	 the	 kinetic	 and	 magnetic	 energy	 density,	 we	 will	 have	
integrals	with	the	following	general	forms	
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1
2𝜋𝑇𝜆 𝑓!𝑅𝑒 𝑓! 𝑑𝑡 𝑑𝑧 𝑑𝜑

!!

!

!

!

!

!
=	

=
1
2 𝑓! 𝑓(𝑟)𝑒!" + 𝑓∗(𝑟)𝑒!!" 𝑑𝑡 𝑑𝑧 𝑑𝜑

!!

!

!

!

!

!
= 0,                     (4.14)	

1
2𝜋𝑇𝜆 𝑅𝑒 𝑓!

!𝑑𝑡 𝑑𝑧 𝑑𝜑
!!

!

!

!

!

!
=	

=
1

2𝜋𝑇𝜆
𝑓(𝑟)𝑓∗(𝑟)

2 𝑑𝑡 𝑑𝑧 𝑑𝜑
!!

!
=
𝑓(𝑟)𝑓∗(𝑟)

2

!

!

!

!
,                      (4.15)	

where	we	have	used	that	the	integrals	of	terms	proportional	to	𝑒±!"	or	𝑒±!!"	are	zero.	

Then,	the	average	of	the	kinetic	energy	density,	given	by	equation	(4.5),	is	

𝐾𝐸 𝑟 =
1
4𝜌!𝒗 · 𝒗

∗.                                                      (4.16)	

Using	expressions	(2.7)	and	(3.5)	the	kinetic	energy	density	averaged	can	be	written	as	
follows	

𝐾𝐸 𝑟 =
1
4𝜌!𝜔

!𝝃 · 𝝃∗.                                                   (4.17)	

Assuming	that	the	magnetic	field	has	the	general	form	(3.23)	and	using	equations	(3.13)	
and	(3.16)	we	can	express	it	as	

𝑩 =  𝐵!𝑒! + 𝐵! 𝑒! + 𝐵! + 𝐵!  𝑒! ,                                        (4.18)	

where	𝐵! = 𝑖𝑘𝐵!𝜉! ,	 	𝐵! = 𝑖𝑘𝐵!𝜉!		and		𝐵! =
!!!
!!
.	Therefore,	the	average	of	the	magnetic	

energy	density,	given	by	equation	(4.6),	is	

𝑀𝐸 𝑟 =
1

2𝜋𝑇𝜆
1
2𝜇!

𝐵!! + 𝐵!! + 𝐵!! + 𝐵!! + 2𝐵!𝐵! 𝑑𝑡 𝑑𝑧 𝑑𝜑
!!

!

!

!

!

!
.   (4.19)	

Using	the	general	results	of	the	integrals	(4.14)	and	(4.15)	the	magnetic	energy	density	
averaged	can	be	written	as	

𝑀𝐸 𝑟 =
1
2𝜇!

𝑘!𝐵!!

2 𝜉!𝜉!∗ +
𝑘!𝐵!!

2 𝜉!𝜉!∗ +
𝜇!!

2𝐵!!
𝑃𝑃∗ + 𝐵!! ,                (4.20)	
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where	the	term	𝐵!!/2𝜇!	is	the	equilibrium	magnetic	energy	density.	Here	we	analyse	the	
wave	energy	density	and	so	this	term	can	be	dropped.	Furthermore,	assuming	𝜉! = 0,	so	
that	𝜉!𝜉!∗ + 𝜉!𝜉!∗ = 𝝃 · 𝝃∗,	the	magnetic	energy	density	is	

𝑀𝐸 𝑟 =
𝐵!!

4𝜇!
𝑘!𝝃 · 𝝃∗ +

𝜇!!

𝐵!!
𝑃𝑃∗ .                                     (4.21)	

And	using	the	equation	(2.9)	we	finally	obtain		

𝑀𝐸 𝑟 =
𝜌!𝑣! 

!

4 𝑘!𝝃 · 𝝃∗ +
1

𝜌!𝑣! 
! ! 𝑃𝑃

∗ .                               (4.22)	

The	 average	 of	 the	 total	 wave	 energy	 density	 is	 the	 sum	 of	 the	 kinetic	 (4.15)	 and	
magnetic	(4.20)	energy	density	averaged	

𝑊 𝑟 =
1
4 𝜌! 𝜔! + 𝑣! 

!𝑘!  𝝃 · 𝝃∗ +
1

𝜌!𝑣! 
! 𝑃𝑃

∗ .                           (4.23)	

In	order	 to	 simplify	 the	calculations	we	define	 the	kinetic	and	magnetic	energy	
densities	 as	 dimensionless	 functions	 of	 dimensionless	 variables,	 which	 have	 been	
defined	 in	Table	3.2.	 𝐾𝐸 (𝑟)	and	 𝑀𝐸 (𝑟)	can	be	written	as	 functions	of	dimensionless	
variables	as	follows	

𝐾𝐸 𝑟 =
1
4𝜌!𝜌!𝜔

!𝑣!"! 𝜉!𝜉!∗ + 𝜉!𝜉!∗ ,                                    (4.24)	

𝑀𝐸 𝑟 =
𝜌!𝑣! 

!

4 𝑘! 𝜉!𝜉!∗ + 𝜉!𝜉!∗ + 𝑃𝑃∗ .                              (4.25)	

The	dimensionless	functions	can	be	obtained	as	shown	in	Table	3.2.	

𝐾𝐸 𝑟 =
1
4𝜌!𝜔

! 𝜉!𝜉!∗ + 𝜉!𝜉!∗ ,                                        (4.26) 	

𝑀𝐸 𝑟 =
1
4 𝑘! 𝜉!𝜉!∗ + 𝜉!𝜉!∗ + 𝑃𝑃∗ ,                                  (4.27)	

𝑊 𝑟 =
1
4 𝜌!𝜔! + 𝑘! 𝜉!𝜉!∗ + 𝜉!𝜉!∗ + 𝑃𝑃∗ .                         (4.28)	

	 Finally,	 using	 the	 expression	 of	 the	 pressure	 of	 the	 discrete	 mode,	 (3.50)	 and	
(3.51),	and	the	definition	of	the	displacement	vector,	(3.27)	and	(3.29),	the	kinetic	and	
magnetic	energies	can	be	expressed	as	
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𝐾𝐸 𝑟 =  

𝜌!𝜔!

4 𝐽!! !(𝑘!𝑎)
 𝐽!!

! 𝑘!𝑟 +
𝑚!

𝑟!𝑘!!
𝐽!! (𝑘!𝑟) ,        𝑟 ≤ 1,            (4.29)

𝜌!𝜔!

4 𝐾!! ! 𝜅!𝑎
𝐾!!

! 𝜅!𝑟 +
𝑚!

𝑟!𝜅!!
𝐾!! 𝜅!𝑟 ,    𝑟 > 1.            (4.30)

	

𝑀𝐸 𝑟 =  

1
4 𝐽!! !(𝑘!𝑎)

𝑘! 𝐽!!
! 𝑘!𝑟 +

𝑚!𝑘!

𝑟!𝑘!!
+ 𝑘!! 𝐽!! 𝑘!𝑟 ,     𝑟 ≤ 1,      (4.31) 

1
4 𝐾!! ! 𝜅!𝑎

𝑘!𝐾!!
! 𝜅!𝑟 +

𝑚!𝑘!

𝑟!𝜅!!
+ 𝜅!! 𝐾!! 𝜅!𝑟 ,   𝑟 > 1.    (4.32) 

	

	

4.3.	Results	

We	 compute	 the	 energy	 density	 of	 the	 fundamental	 discrete	 (proper)	 mode,	 whose	
eigenfunctions	 have	 been	 shown	 in	 Figures	 3.5	 and	 3.6	 for	 two	 different	 longitudinal	
wavelengths.	 Continuous	 (improper)	 modes	 have	 eigenfunctions	 that	 are	 non-square	
integrable	 and	 for	 this	 reason	 their	 energy	 density	 integrated	 over	 the	 whole	 spatial	
domain	is	infinite.	

4.3.1.	Radial	variation	of	the	energy	density	

	 In	 the	 following	 figures	we	plot	 the	radial	variation	of	 the	kinetic	and	magnetic	
energy	densities	given	by	equations	(4.29),		(4.30),	(4.31)	and	(4.32)	for	the	parameter	
values	used	before,	namely	𝜌!/𝜌!  = 1/4	and	𝑚 = 1.	

								 										

Figure	 4.1:	 Radial	 dependence	 of	 the	 total	 (green),	 kinetic	 (red)	 and	 magnetic	 (blue)	 energy	 density	 for	 the	
eigenmode	 of	 Figure	 3.5	 (𝑘 = 0.1).	 Left:	 energy	 densities.	 Right:	 energy	 densities	 normalized	 to	 the	 total	 energy	
density.
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Figure	4.2:	Same	as	Figure	4.1	for	the	eigenmode	of	Figure	3.6	(𝑘 = 2).	

								 	

Figure	4.3:	Same	as	Figure	4.1	for	the	eigenmode	with	𝑘 = 5.	

	

We	first	make	a	comparison	of	the	radial	distribution	of	the	kinetic	and	magnetic	
energy	 densities.	 In	 the	 left	 panel	 one	 can	 appreciate	 that	 most	 of	 the	 energy	 is	
concentrated	 inside	 the	coronal	 loop,	where	 the	kinetic	 contribution	 is	dominant	over	
the	magnetic	one.	Furthermore,	outside	the	loop	the	magnetic	energy	is	more	important	
and	both	terms	decay	quickly	with	𝑟.	

The	right	panel	in	Figure	4.1	shows	that	the	energy	percentage	associated	to	the	
kinetic	 and	 magnetic	 terms	 is	 independent	 of	𝑟	both	 inside	 and	 outside	 the	 cylinder:	
their	respective	contributions	are	roughly	60%	and	40%	inside	the	 loop	and	30%	and	
70%	outside	the	loop.	Increasing	𝑘	(Figures	4.2	and	4.3)	leads	to	the	total	energy	being	
more	evenly	distributed	between	kinetic	and	magnetic	 inside	 the	 loop	and	 less	evenly	
distributed	 in	 the	 environment.	 Inside	 the	 loop	 and	 in	 the	 limit	 of	𝑘 → ∞	the	 two	
energies	 become	 equal	 because	 the	 pressure	 term,	 which	 appears	 in	 the	 magnetic	
energy,	vanishes.	In	this	case	we	would	have	energy	equipartition.	Figure	4.3	provides	a	
hint	of	this	behaviour	of	the	energy	densities	as	𝑘 → ∞.	

	 The	kinetic	energy	density	for	𝑟 ≤ 𝑎	and	𝑘 = 0.1	(Figure	4.1)	behaves	as	constant	
because	the	loop	moves	as	a	solid	body.	On	the	other	hand,	for	the	values	𝑘 = 2	(Figure	
4.2)	or	𝑘 = 5	(Figure	4.3)	we	can	observe	that	the	kinetic	energy	density	does	not	have	a	
constant	value	for	𝑟 ≤ 1.	Hence,	for	these	values	of	𝑘	any	point	of	the	loop	has	a	different	
velocity	and	also	different	kinetic	and	magnetic	energies.	

	 In	the	three	cases	we	have	studied	the	kinetic	energy	density	 is	bigger	than	the	
magnetic	energy	density	for	small	values	of	𝑟/𝑎,	but	there	is	a	point	where	the	magnetic	
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term	exceeds	 the	kinetic	one.	 In	Figures	4.1	and	4.2	 this	point	 is	 at	 the	 loop	boundary	
𝑟/𝑎 = 1	and	in	Figure	4.3	it	is	inside	the	loop.	This	is	very	clearly	seen	in	the	crossing	of	
the	red	and	blue	curves	on	the	right	panel	of	Figure	4.3.	The	reason	for	this	behaviour	is	
beyond	the	scope	of	this	work.		

		

4.3.2.	Variation	of	the	energy	density	with	the	longitudinal	wavenumber	

Here	we	integrate	 𝐾𝐸 (𝑟)	and	 𝑀𝐸 (𝑟)	over	the	interval	0 < 𝑟 < ∞	to	obtain	the	energy	
densities	over	the	whole	volume.	The	general	form	of	those	integrals	is	

𝑊 = 𝑊 (𝑟)
!

!
 𝑟 𝑑𝑟 = 𝑊! 𝑟  𝑟 𝑑𝑟

!

!
+ 𝑊! 𝑟  𝑟 𝑑𝑟

!

!
,              (4.33)	

where	 𝑊! 𝑟 	and	 𝑊! 𝑟 	refer	 to	 the	 total	 energy	 density	 as	 a	 function	 of	 position	
inside	and	outside	the	cylinder.	

	 Using	the	dimensionless	expressions	(4.29)	and	(4.30)	for	the	kinetic	and	(4.31)	
and	(4.32)	for	the	magnetic	energies	and	applying	the	general	form	(4.33)	we	have	the	
following		

𝐾𝐸 =
𝜌!𝜔!

4 𝐽!! ! 𝑘!𝑎
𝐽!!

! 𝑘!𝑟  𝑟 𝑑𝑟
!

!
+
𝑚!

𝑘!!
𝐽!! 𝑘!𝑟

1
𝑟  𝑑𝑟

!

!
	

+
𝜌!𝜔!

4 𝐾!! ! 𝜅!𝑎
𝐾!!

! 𝜅!𝑟  𝑟 𝑑𝑟
!

!
+
𝑚!

𝜅!!
𝐾!! (𝜅!𝑟)

1
𝑟  𝑑𝑟

!

!
,                 (4.34)	

𝑀𝐸 =
1

4 𝐽!! !(𝑘!𝑎)
𝑘! 𝐽!!

! 𝑘!𝑟  𝑟 𝑑𝑟
!

!
+
𝑚!𝑘!

𝑘!!
𝐽!! (𝑘!𝑟)

1
𝑟  𝑑𝑟

!

!
+ 𝑘!! 𝐽!! 𝑘!𝑟  𝑟 𝑑𝑟

!

!

+
1

4 𝐾!! ! 𝜅!𝑎
𝑘! 𝐾!!

! 𝜅!𝑟  𝑟 𝑑𝑟
!

!
+
𝑚!𝑘!

𝜅!!
𝐾!! 𝜅!𝑟

1
𝑟  𝑑𝑟

!

!

+ 𝜅!! 𝐾!! 𝜅!𝑟  𝑟 𝑑𝑟
!

!
.                                                                                   (4.35)	

	 If	we	assume	𝑚 = 1,	which	corresponds	to	the	fundamental	discrete	kink	mode,	
the	 integrals	 of	Bessel’s	 functions	 that	 appear	 in	 the	 above	 expressions	 can	be	 solved	
using	 the	 primitives	 given	 in	 Rosenheinrich	 (2014),	 pp.	 166	 and	 185.	 Therefore,	 the	
dimensionless	kinetic	and	magnetic	energy	densities	of	the	fundamental	discrete	mode	
as	a	function	of	the	linear	wavenumber	are	

𝐾𝐸 =
𝜌!𝜔!

8 𝑘!!𝐽!!
! 𝑘!𝑎

𝑘!𝑎
!𝐽!! 𝑘!𝑎 + 𝑘!𝑎

! − 2 𝐽!! 𝑘!𝑎 	

+
𝜌!𝜔!

8 𝜅!!𝐾!!
! 𝜅!𝑎

𝜅!𝑎 ! + 1 𝐾!! 𝜅!𝑎 − 𝜅!𝑎 ! + 2 𝐾!! 𝜅!𝑎 ,      (4.36)	
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𝑀𝐸 =
1

8 𝑘!!𝐽!!
!(𝑘!𝑎)

𝑘! 𝑘!𝑎
!𝐽!! 𝑘!𝑎 + 𝑘!𝑎

! − 2 𝐽!! 𝑘!𝑎

+ 𝑘!!𝑎 𝑎 𝐽!! 𝑘!𝑎 + 𝐽!! 𝑘!𝑎 − 2𝐽!! 𝑘!𝑎 𝐽!! 𝑘!𝑎

+
1

8 𝜅!!𝐾!!
! 𝜅!𝑎

𝑘! 𝜅!𝑎 ! + 2 𝐾!! 𝜅!𝑎 − 𝜅!𝑎 ! + 1 𝐾!! 𝜅!𝑎

− 𝜅!!𝑎 𝑎 𝐾!! 𝜅!𝑎 − 𝐾!! 𝜅!𝑎 + 2𝐾! 𝜅!𝑎 𝐾! 𝜅!𝑎 .                             (4.37)	

Finally,	in	Figure	4.4	we	plot	the	kinetic	(4.36)	and	magnetic	(4.37)	energy	densities	for	
the	 parameter	 values	 used	 before,	 namely	𝜌!/𝜌!  = 1/4	and	𝑚 = 1.	 This	 is	 done	 for	
longitudinal	wavenumbers	0 < 𝑘 < 5	so	 that	 the	 influence	 of	 the	wavenumber	 can	 be	
clearly	appreciated.	

								 	

Figure	4.4:	Left:	kinetic	(red)	and	magnetic	(blue)	energy	density	of	the	fundamental	discrete	kink	mode	as	a	function	
of	 wavenumber.	 Right:	 percentage	 of	 the	 total	 energy	 associated	 to	 the	 kinetic	 and	 magnetic	 terms	 for	 the	
fundamental	discrete	kink	mode	

In	 the	 left	panel	of	Figure	4.4	we	can	observe	 that,	 for	 the	constants	𝐶!! 	and	𝐶!! 	
chosen	 here,	 the	 total	 kinetic	 and	 magnetic	 energy	 densities	 increase	 with	 the	
longitudinal	 wavenumber.	 Furthermore,	 for	 wavenumbers	 values	 larger	 than	 2,	 the	
magnetic	energy	density	increases	much	faster	than	the	kinetic	one.		

In	 the	right	panel	of	Figure	4.4	we	show	the	percentage	of	each	energy	density.	
For	wavenumber	values	𝑘 < 1	the	kinetic	energy	dominates	over	the	magnetic	one.	On	
the	 other	 hand,	 for	 values	𝑘 > 1	the	 magnetic	 energy	 becomes	 much	 larger	 than	 the	
kinetic	one,	which	becomes	negligible.		
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Conclusions		

This	project	has	been	 focused	on	magnetohydrodynamic	waves	 in	solar	coronal	 loops,	
studying	the	total	pressure	and	displacement	vector	behaviour	depending	on	the	value	
of	the	longitudinal	wavenumber.	The	wave	energetics	has	also	been	investigated.	

	 We	have	considered	a	coronal	 loop	 in	static	equilibrium,	modelled	as	a	straight	
magnetic	 cylinder,	which	we	 have	 perturbed	 about	 the	 equilibrium	 state.	 Introducing	
the	 perturbed	 quantities	 in	 the	 MHD	 equations	 and	 imposing	 the	 continuity	 of	 the	
pressure	 and	 the	 radial	 displacement	 at	 the	 loop	 boundary,	 we	 have	 obtained	
expressions	for	the	radial	variation	of	the	perturbed	pressure	and	displacement	vector.		
These	solutions	have	been	found	in	three	different	frequency	regions,	depending	on	the	
value	of	the	quantity	𝑘!!,	where	𝑘! 	plays	the	role	of	a	radial	wavenumber.		

Some	plots	have	been	included	to	interpret	the	physical	nature	of	these	solutions	
for	 the	𝑚 = 1 	case.	 We	 have	 realised	 that	 for	 small	 values	 of	 the	 longitudinal	
wavenumber	 (e.g.,	𝑘𝑎 = 0.1),	 in	 the	 frequency	 region	𝑘 𝑣!" < 𝜔 < 𝑘 𝑣!" ,	 the	 coronal	
loop	behaves	as	a	solid	body.	Moreover,	both	in	this	frequency	region	and	for	𝑘 𝑣!" < 𝜔,	
for	which	we	have	allowed	values	of	the	frequency,	a	velocity	shear	at	the	loop	boundary	
is	 present.	 Furthermore,	 in	 the	 frequency	 region	𝑘 𝑣!" < 𝜔,	 we	 have	 shown	 that	 the	
pressure	and	displacement	vector	in	the	loop	environment	possess	a	radially	oscillatory	
behaviour	because	of	their	dependence	on	the	Bessel	functions	J	and	Y.		

In	 the	 last	 section	 we	 have	 analyzed	 the	 radial	 variation	 of	 the	 kinetic	 and	
magnetic	 energy	 densities	 for	 different	 values	 of	 the	 longitudinal	wavenumber	 in	 the	
frequency	region	𝑘 𝑣!" < 𝜔 < 𝑘 𝑣!" .	We	have	shown	that	most	of	 the	energy	density	 is	
concentrated	 inside	 the	coronal	 loop,	where	 the	kinetic	 contribution	 is	dominant	over	
the	magnetic	one.	Outside	the	loop,	where	the	magnetic	contribution	is	more	important,	
both	energy	densities	decay	rapidly	with	𝑟.	Furthermore,	we	have	shown	that	increasing	
the	 longitudinal	 wavenumber	 the	 total	 energy	 becomes	 more	 evenly	 distributed	
between	 kinetic	 and	 magnetic	 inside	 the	 loop	 and	 less	 evenly	 distributed	 in	 the	
environment.	 Moreover,	 inside	 the	 loop	 and	 in	 the	 limit	𝑘 → ∞ 	we	 have	 energy	
equipartition.	

	Finally,	 we	 have	 obtained	 the	 energy	 densities	 over	 the	 whole	 volume	 as	 a	
function	 of	 the	 longitudinal	 wavenumber.	 We	 have	 shown	 that	 these	 total	 energy	
densities	increase	with	the	longitudinal	wavenumber	and	that,	for	values	of	𝑘𝑎 > 2,	the	
magnetic	energy	density	increases	much	faster	than	the	kinetic	one.	

For	 future	 projects	 it	 would	 be	 interesting	 to	 study	 the	 case	 in	 which	 the	
azimuthal	 wavenumber	 is	𝑚 ≠ 1	and	 also	 the	 superposition	 of	 two	 waves	 of	 equal	
amplitude	 travelling	 in	opposite	directions.	The	wave	energy	 flow,	 represented	by	 the	
vector	𝑸	in	equation	(4.1),	is	also	worth	being	investigated.	The	energetics	of	improper	
modes	could	also	be	addressed.		

It	should	be	noted	that	the	results	we	have	obtained	are	approximations	because	
(i)	 coronal	 loops	 have	 curvature	 and	 so	 are	 not	 perfect	 cylinders	 and	 (ii)	 we	 have	
assumed	 that	 perturbations	 are	 much	 smaller	 than	 their	 corresponding	 equilibrium	
values.	 	
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