Removing interactions, rather than species, casts doubt on the high robustness of pollination networks

Show simple item record

dc.contributor.author Santamaría, Silvia
dc.contributor.author Galeano, Javier
dc.contributor.author Pastor, Juan Manuel
dc.contributor.author Méndez, Marcos
dc.date.accessioned 2020-01-21T08:04:00Z
dc.date.available 2020-01-21T08:04:00Z
dc.identifier.uri http://hdl.handle.net/11201/150634
dc.description.abstract [eng] In the last 15 years, a complex networks perspective has been increasingly used in the robustness assessment of ecological systems. It is therefore crucial to assess the reliability of such tools. Based on the traditional simulation of node (species) removal, mutualistic pollination networks are considered to be relatively robust because of their 1) truncated power‐law degree distribution, 2) redundancy in the number of pollinators per plant and 3) nested interaction pattern. However, species removal is only one of several possible approaches to network robustness assessment. Empirical evidence suggests a decline in abundance prior to the extinction of interacting species, arguing in favour of an interaction removal‐based approach (i.e. interaction disruption), as opposed to traditional species removal. For simulated networks, these two approaches yield radically different conclusions, but no tests are currently available for empirical mutualistic networks. This study compared this new robustness evaluation approach based on interaction extinction versus the traditional species removal approach for 12 alpine and subalpine pollination networks. In comparison with species removal, interaction removal produced higher robustness in the worst‐case extinction scenario but lower robustness in the best‐case extinction scenario. Our results indicate that: 1) these two approaches yield very different conclusions and 2) existing assessments of ecological network robustness could be overly optimistic, at least those based on a disturbance affecting species at random or beginning with the least connected species. Therefore, further empirical study of plant-pollinator interactions in disturbed ecosystems is imperative to understand how pollination networks are disassembled.
dc.format application/pdf
dc.relation.isformatof Versió postprint del document publicat a: https://doi.org/10.1111/oik.02921
dc.relation.ispartof Oikos, 2015, vol. 125, num. 4, p. 526-534
dc.rights (c) Santamaría, Silvia et al., 2015
dc.subject.classification 574 - Ecologia general i biodiversitat
dc.subject.other 574 - General ecology and biodiversity Biocoenology. Hydrobiology. Biogeography
dc.title Removing interactions, rather than species, casts doubt on the high robustness of pollination networks
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/acceptedVersion
dc.date.updated 2020-01-21T08:04:00Z
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1111/oik.02921


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics