[eng] Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. The difficulty of demonstrating a fixed point theorem in such kind of spaces makes the authors to demand extra conditions on the space other than completeness. In this paper, we introduce a new version of the celebrated Banach contracion principle in the context of fuzzy metric spaces. It is defined by means of t-conorms and constitutes an adaptation to the fuzzy context of the mentioned contracion principle more 'faithful' than the ones already defined in the literature. In addition, such a notion allows us to prove a fixed point theorem without requiring any additional condition on the space apart from completeness. Our main result (Theorem 1) generalizes another one proved by Castro-Company and Tirado. Besides, the celebrated Banach fixed point theorem is obtained as a corollary of Theorem 1.