Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode

Show simple item record

dc.contributor.author García-Valverde, María Teresa
dc.contributor.author Rosende, María
dc.contributor.author Lucena, Rafael
dc.contributor.author Cárdenas, Soledad
dc.contributor.author Miró, Manuel
dc.date.accessioned 2019-09-09T10:37:16Z
dc.date.available 2019-09-09T10:37:16Z
dc.identifier.uri http://hdl.handle.net/11201/149817
dc.description.abstract Mesofluidic lab-on-a-valve (LOV) platforms have been proven suitable to accommodate automatic micro-solid-phase extraction (μSPE) approaches with on-chip handling of micrometer-bead materials in a fully disposable mode to prevent sample cross-contamination and pressure-drop effects. The efficiency of the extraction process notably depends upon the sorptive capacity of the material because the sorbent mass is usually down to 10 mg in LOV devices. Nanomaterials, capitalizing upon their enhanced surface-to-volume ratio and diversity of potential chemical moieties, are appealing alternatives to microbead sorbents. However, the handling and confinement of nanomaterials in fluidic chip structures have been challenging to date. This is most likely a consequence of the aggregation tendency of a number of nanomaterials, including carbon-based sorbents, that leads to excessive back-pressure in flowing systems along with irreproducible bead loading. This paper addresses these challenges by ad hoc synthesis of hybrid nanomaterials, such as porous carbon-coated titanium dioxide nanotubes (TiO2-NT@pC). Tailoring of the surface polarity of the carbon coating is proven to foster the dispersion of TiO2-NT@pC in LOV settings while affording superior extraction capability of moderately nonpolar species from aqueous matrices. The determination of trace-level concentrations of butylparaben (BPB) and triclosan (TCS) in seawater samples is herein selected as a proof-of-concept of the exploitation of disposable nanomaterials in LOV. The mesofluidic platform accommodating μSPE features online hyphenation to liquid chromatography/tandem mass spectrometry (LC/MS/MS) for reliable determination of the target analytes with excellent limits of detection (0.5 and 0.6 ng/L for BPB and TCS, respectively) and intermediate precision (relative standard deviation <5.8%). For 5.0 mL of sample and 200 μL of eluent, enrichment factors of 23 and 14 with absolute extraction efficiencies of 90% ± 14% and 58 ± 8% for BPB and TCS, respectively, were obtained. The relative recovery values of 107% (BPB) and 97% (TCS) in seawater demonstrate the applicability of online LOV-LC/MS/MS using TiO2-NT@pC for handling troublesome environmental samples.
dc.format application/pdf
dc.relation.isformatof Versió postprint del document publicat a: https://doi.org/10.1021/acs.analchem.8b00158
dc.relation.ispartof Analytical Chemistry, 2018, vol. 90, num. 7, p. 4783-4791
dc.subject.classification 543 - Química analítica
dc.subject.other 543 - Analytical chemistry
dc.title Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/acceptedVersion
dc.date.updated 2019-09-09T10:37:26Z
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1021/acs.analchem.8b00158


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics