Amplification of Australian Heatwaves via Local Land-Atmosphere Coupling

Show simple item record

dc.contributor.author Hirsch, A.L.
dc.contributor.author Evans, J.P.
dc.contributor.author Di Virgilio, G.
dc.contributor.author Perkins-Kirkpatrick, S.E.
dc.contributor.author Argüeso, D.
dc.contributor.author Pitman, A.J.
dc.contributor.author Carouge, C.
dc.contributor.author Kala, J.
dc.contributor.author Andrys, J.
dc.contributor.author Petrelli, P.
dc.contributor.author Rockel, B.
dc.date.accessioned 2020-02-04T06:58:13Z
dc.identifier.uri http://hdl.handle.net/11201/150794
dc.description.abstract [eng] Antecedent land surface conditions play a role in the amplification of temperature anomalies experienced during heatwaves by modifying the local partitioning of available energy between sensible and latent heating. Most existing analyses of heatwave amplification from soil moisture anomalies have focused on exceptionally rare events and consider seasonal scale timescales. However, it is not known how much the daily evolution of land surface conditions, both before and during a heatwave, contributes to the intensity and frequency of these extremes. We examine how the daily evolution of land surface conditions preceding a heatwave event contributes to heatwave intensity. We also diagnose why the land surface contribution to Australian heatwaves is not homogeneous due to spatiotemporal variations in land‐atmosphere coupling. We identify two coupling regimes: a land‐driven regime where surface temperatures are sensitive to local variations in sensible heating and an atmosphere‐driven regime where this is not the case. Northern Australia is consistently strongly coupled, where antecedent soil moisture conditions can influence temperature anomalies up to day 4 of a heatwave. For southern Australia, heatwave temperature anomalies are not influenced by antecedent soil moisture conditions due to an atmosphere‐driven coupling regime. Therefore, antecedent land surface conditions have a role in increasing the temperature anomalies experienced during a heatwave only over regions with strong land‐driven coupling. The timescales over which antecedent land surface conditions contribute to Australian heatwaves also vary regionally. Overall, the spatiotemporal variations of land‐atmosphere interactions help determine where and when antecedent land surface conditions contribute to Australian heat extremes.
dc.format application/pdf
dc.relation.isformatof https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD030665
dc.relation.ispartof Journal Of Geophysical Research-Atmospheres, 2019, vol. 124, num. 24, p. 13625-13647
dc.rights , 2019
dc.subject.classification 55 - Geologia. Meteorologia
dc.subject.other 55 - Earth sciences. Geological sciences
dc.title Amplification of Australian Heatwaves via Local Land-Atmosphere Coupling
dc.type info:eu-repo/semantics/article
dc.date.updated 2020-02-04T06:58:14Z
dc.date.embargoEndDate
dc.embargo
dc.rights.accessRights info:eu-repo/semantics/embargoedAccess
dc.identifier.doi https://doi.org/10.1029/2019JD030665


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics