A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron

Show simple item record

dc.contributor.author Ortín, S.
dc.contributor.author Soriano, M. C.
dc.contributor.author Pesquera, L.
dc.contributor.author Brunner, D.
dc.contributor.author San-Martín, D.
dc.contributor.author Fischer, I.
dc.contributor.author Mirasso, C. R.
dc.contributor.author Gutiérrez, J. M.
dc.date.accessioned 2025-01-31T11:54:18Z
dc.date.available 2025-01-31T11:54:18Z
dc.identifier.citation Ortín, S., Soriano, M. C., Pesquera, L., Brunner, D., San-Martín, D., Fischer, I., Mirasso, C.R. i Gutiérrez, J. M. (2015). A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Scientific reports, 5(1), 14945.https://doi.org/10.1038/srep14945
dc.identifier.uri http://hdl.handle.net/11201/168447
dc.description.abstract [eng] In this paper we present a unified framework for extreme learning machines and reservoir computing (echo state networks), which can be physically implemented using a single nonlinear neuron subject to delayed feedback. The reservoir is built within the delay-line, employing a number of “virtual” neurons. These virtual neurons receive random projections from the input layer containing the information to be processed. One key advantage of this approach is that it can be implemented efficiently in hardware. We show that the reservoir computing implementation, in this case optoelectronic, is also capable to realize extreme learning machines, demonstrating the unified framework for both schemes in software as well as in hardware.
dc.format application/pdf
dc.relation.isformatof Reproducció del document publicat a: https://doi.org/10.1038/srep14945
dc.relation.ispartof Scientific Reports, 2015, vol. 5, p. 14945
dc.rights cc-by (c) Ortín, S. et al., 2015
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.subject.classification 53 - Física
dc.subject.other 53 - Physics
dc.title A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion
dc.date.updated 2025-01-31T11:54:18Z
dc.subject.keywords delay systems
dc.subject.keywords reservoir computing
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1038/srep14945


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

cc-by (c)  Ortín, S. et al., 2015 Except where otherwise noted, this item's license is described as cc-by (c) Ortín, S. et al., 2015

Search Repository


Advanced Search

Browse

My Account

Statistics