[eng] TAMOF-1 is a robust, highly porous metal–organic framework built from Cu2+ centers linked by a L-histidine derivative. Thanks to its high porosity and homochirality, TAMOF-1 has shown interesting molecular recognition properties, being able to resolve racemic mixtures of small organic molecules in gas and liquid phases. Now, we have discovered that TAMOF-1 also offers a competitive performance as solid adsorbent for CO2 physisorption, offering promising CO2 adsorption capacity ( > 3.8 mmol g–1) and CO2/CH4 Ideal Adsorbed Solution Theory (IAST) selectivity ( > 40) at ambient conditions. Moreover, the material exhibits favorable adsorption kinetics under dynamic conditions, demonstrating good stability in high-humidity environments and minimal degradation in strongly acidic media. We have identified the key interactions of CO2 within the TAMOF-1 framework by a combination of structural (neutron diffraction), spectroscopic and theoretical analyses which conclude a dual-site adsorption mechanism with the majority of adsorbed CO2 molecules occupying the empty voids in the TAMOF-1 channels without strong, directional supramolecular interactions. This very weak dominant binding opens the possibility of a low energy regeneration process for convenient CO2 purification. These features identify TAMOF-1 as a viable solid-state adsorbent for the realization of affordable biogas upgrading.