[eng] In the field of sample preparation, a vast amount of effort over the past decade has been geared toward the development of sustainable liquid and sorptive phases with green credentials and practicality to solve analytical challenges. Notwithstanding the main types and formats of biodegradable and renewable materials encompass bead and solid-fiber type arrangements, sustainable materials are readily amenable to membrane-based microextraction. In this manuscript, the role of biomembranes and biomembrane composites incorporating nanostructured materials, biomolecules and hydrophobic natural solvents for the isolation and preconcentration of organic and inorganic pollutants based on thin film microextraction, supported liquid-phase microextraction and electromembrane extraction is discussed in detail. Insights into the physicochemical properties that endow these biomembranes with unique features for extraction procedures in environmental, food, and biological matrices along with challenges to make them competitive in terms of analytical properties against synthetic polymer phases are highlighted. The potential of integrating planar biomembranes in automatic flow systems and performing on-site screening protocols with chromogenic polymeric membranes is also underscored.