[eng] Peritoneal carcinomatosis (PC) is typically treated by cytoreductive surgery (CRS) and subsequent hemotherapy. Sealing hemostatic patches (HP) are often used during these surgeries to prevent complications such as uncontrolled bleeding. These HP are made of biomaterials like oxidized cellulose or collagen with a binding agent, and beyond their usual function, they could also be used as drug delivery systems (DDS) for localized intraperitoneal chemotherapy in the tissue attached. Our first aim was to characterize and compare three different commercial HP (TachoSil®, Hemopatch®, and VerisetTM). Hemopatch® emerged as the most suitable candidate due to its combination of properties, including slow degradation, high hydrophilicity, excellent biological fluid absorption capacity, and moderate adhesive capacity alongside hemostasis. Utilizing Hemopatch® as a scaffold, we developed a new device incorporating a hyaluronic acid hydrogel loaded with cisplatin or olaparib. This approach facilitated sustained drug release for over 6 days, maintaining the anticancer efficacy of these agents on OVCAR-3 cells. In conclusion, integrating a DDS into HP shows potential for precisely delivering chemotherapeutic agents to any residual microscopic disease in PC following CRS.