Some qüestions in fuzzy metric spaces

Show simple item record Gregori, Valentín Miñana, Juan-José Morillas, Samuel 2020-04-02T09:44:44Z 2020-04-02T09:44:44Z
dc.description.abstract [eng] The George and Veeramani's fuzzy metric defined by $M^*(x,y,t)=\frac{min\{x,y\}+t}{max\{x,y\}+t}$ on $[0,\infty[$ (the set of non-negative real numbers) has shown some advantages in front of classical metrics in the process of filtering images. In this paper we study from the mathematical point of view this fuzzy metric and other fuzzy metrics related to it. As a consequence of this study we introduce, throughout the paper, some questions relative to fuzzy metrics. Also, as another practical application, we show that this fuzzy metric is useful for measuring perceptual colour differences between colour samples.
dc.format application/pdf
dc.relation.isformatof Versió postprint del document publicat a:
dc.relation.ispartof Fuzzy Sets and Systems, 2012, vol. 204, p. 71-85
dc.subject.classification 51 - Matemàtiques
dc.subject.classification 004 - Informàtica
dc.subject.other 51 - Mathematics
dc.subject.other 004 - Computer Science and Technology. Computing. Data processing
dc.title Some qüestions in fuzzy metric spaces
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/acceptedVersion 2020-04-02T09:44:45Z
dc.subject.keywords Fuzzy metric space
dc.subject.keywords fuzzy metric completion
dc.subject.keywords strong fuzzy metric
dc.subject.keywords principal fuzzy metric
dc.rights.accessRights info:eu-repo/semantics/openAccess

Files in this item

This item appears in the following Collection(s)

Show simple item record