dc.contributor.author |
Gregori, Valentín
|
|
dc.contributor.author |
Miñana, Juan-José
|
|
dc.contributor.author |
Morillas, Samuel
|
|
dc.date.accessioned |
2020-04-02T09:44:44Z |
|
dc.date.available |
2020-04-02T09:44:44Z |
|
dc.identifier.uri |
http://hdl.handle.net/11201/151899 |
|
dc.description.abstract |
[eng] The George and Veeramani's fuzzy metric defined by $M^*(x,y,t)=\frac{min\{x,y\}+t}{max\{x,y\}+t}$ on $[0,\infty[$ (the set of non-negative real numbers) has shown some advantages in front of classical metrics in the process of filtering images. In this paper we study from the mathematical point of view this fuzzy metric and other fuzzy metrics related to it. As a consequence of this study we introduce, throughout the paper, some questions relative to fuzzy metrics. Also, as another practical application, we show that this fuzzy metric is useful for measuring perceptual colour differences between colour samples. |
|
dc.format |
application/pdf |
|
dc.relation.isformatof |
Versió postprint del document publicat a: https://doi.org/10.1016/j.fss.2011.12.008 |
|
dc.relation.ispartof |
Fuzzy Sets and Systems, 2012, vol. 204, p. 71-85 |
|
dc.subject.classification |
51 - Matemàtiques |
|
dc.subject.classification |
004 - Informàtica |
|
dc.subject.other |
51 - Mathematics |
|
dc.subject.other |
004 - Computer Science and Technology. Computing. Data processing |
|
dc.title |
Some qüestions in fuzzy metric spaces |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:eu-repo/semantics/acceptedVersion |
|
dc.date.updated |
2020-04-02T09:44:45Z |
|
dc.subject.keywords |
Fuzzy metric space |
|
dc.subject.keywords |
fuzzy metric completion |
|
dc.subject.keywords |
strong fuzzy metric |
|
dc.subject.keywords |
principal fuzzy metric |
|
dc.rights.accessRights |
info:eu-repo/semantics/openAccess |
|
dc.identifier.doi |
https://doi.org/10.1016/j.fss.2011.12.008 |
|