A note on convergence in fuzzy metric spaces

Show simple item record

dc.contributor.author Gregori, Valentín
dc.contributor.author Miñana, Juan-José
dc.contributor.author Morillas, Samuel
dc.date.accessioned 2020-04-02T09:57:11Z
dc.date.available 2020-04-02T09:57:11Z
dc.identifier.uri http://hdl.handle.net/11201/151901
dc.description.abstract [eng] The sequential p-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are s-convergent. In such a case M is called an s-fuzzy metric. If (N_M,*) is a fuzzy metric on X where $N_M(x,y)=\bigwedge\{M(x,y,t):t>0\}$ then it is proved that the topologies deduced from M and N_M coincide if and only if M is an s-fuzzy metric.
dc.format application/pdf
dc.relation.isformatof https://doi.org/10.22111/IJFS.2014.1625
dc.relation.ispartof Iranian Journal Of Fuzzy Systems, 2014, vol. 11, num. 4, p. 75-85
dc.rights , 2014
dc.subject.classification 51 - Matemàtiques
dc.subject.classification 004 - Informàtica
dc.subject.other 51 - Mathematics
dc.subject.other 004 - Computer Science and Technology. Computing. Data processing
dc.title A note on convergence in fuzzy metric spaces
dc.type info:eu-repo/semantics/article
dc.date.updated 2020-04-02T09:57:11Z
dc.subject.keywords Fuzzy metric space
dc.subject.keywords principal fuzzy metric
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.22111/IJFS.2014.1625


Files in this item

This item appears in the following Collection(s)

Show simple item record