Alien limit cycles in Abel equations

Show simple item record

dc.contributor.author Álvarez, M.J.
dc.contributor.author Bravo, J.L.
dc.contributor.author Fernández, M.
dc.contributor.author Prohens, R.
dc.date.accessioned 2020-04-03T07:47:20Z
dc.date.available 2020-04-03T07:47:20Z
dc.identifier.uri http://hdl.handle.net/11201/151938
dc.description.abstract [eng] Periodic solutions, Abel equation, Alien limit cycles, Abelian integrals, Bifurcation', abstract = 'The aim of this paper is to study the existence of limit cycles for a family of generalized Abel equations x′=A(t)xm+B(t)xn, m,n≥2. Under certain assumptions, it is proved that there exists a non-trivial limit cycle. This limit cycle has the characteristic that it arises from neither a Hopf bifurcation nor a perturbation of periodic orbits in a period annulus around the centre at the origin.
dc.format application/pdf
dc.relation.isformatof Versió postprint del document publicat a: https://doi.org/10.1016/j.jmaa.2019.123525
dc.relation.ispartof Journal of Mathematical Analysis and Applications, 2020, vol. 482, num. 123525, p. 1-20
dc.subject.classification 004 - Informàtica
dc.subject.classification 51 - Matemàtiques
dc.subject.other 004 - Computer Science and Technology. Computing. Data processing
dc.subject.other 51 - Mathematics
dc.title Alien limit cycles in Abel equations
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/acceptedVersion
dc.date.updated 2020-04-03T07:47:21Z
dc.subject.keywords Periodic solutions
dc.subject.keywords Abel equation
dc.subject.keywords Alien limit cycles
dc.subject.keywords Abelian integrals
dc.subject.keywords bifurcation of periodic orbits
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1016/j.jmaa.2019.123525


Files in this item

This item appears in the following Collection(s)

Show simple item record