dc.contributor.author |
Álvarez, M.J.
|
|
dc.contributor.author |
Bravo, J.L.
|
|
dc.contributor.author |
Fernández, M.
|
|
dc.contributor.author |
Prohens, R.
|
|
dc.date.accessioned |
2020-04-03T07:47:20Z |
|
dc.date.available |
2020-04-03T07:47:20Z |
|
dc.identifier.uri |
http://hdl.handle.net/11201/151938 |
|
dc.description.abstract |
[eng] Periodic solutions, Abel equation, Alien limit cycles, Abelian integrals, Bifurcation', abstract = 'The aim of this paper is to study the existence of limit cycles for a family of generalized Abel equations x′=A(t)xm+B(t)xn, m,n≥2. Under certain assumptions, it is proved that there exists a non-trivial limit cycle. This limit cycle has the characteristic that it arises from neither a Hopf bifurcation nor a perturbation of periodic orbits in a period annulus around the centre at the origin. |
|
dc.format |
application/pdf |
|
dc.relation.isformatof |
Versió postprint del document publicat a: https://doi.org/10.1016/j.jmaa.2019.123525 |
|
dc.relation.ispartof |
Journal of Mathematical Analysis and Applications, 2020, vol. 482, num. 123525, p. 1-20 |
|
dc.subject.classification |
004 - Informàtica |
|
dc.subject.classification |
51 - Matemàtiques |
|
dc.subject.other |
004 - Computer Science and Technology. Computing. Data processing |
|
dc.subject.other |
51 - Mathematics |
|
dc.title |
Alien limit cycles in Abel equations |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:eu-repo/semantics/acceptedVersion |
|
dc.date.updated |
2020-04-03T07:47:21Z |
|
dc.subject.keywords |
Periodic solutions |
|
dc.subject.keywords |
Abel equation |
|
dc.subject.keywords |
Alien limit cycles |
|
dc.subject.keywords |
Abelian integrals |
|
dc.subject.keywords |
bifurcation of periodic orbits |
|
dc.rights.accessRights |
info:eu-repo/semantics/openAccess |
|
dc.identifier.doi |
https://doi.org/10.1016/j.jmaa.2019.123525 |
|