dc.contributor.author |
Gasull, A. |
|
dc.contributor.author |
Álvarez, M.J. |
|
dc.contributor.author |
Prohens, R. |
|
dc.date.accessioned |
2023-08-02T06:56:32Z |
|
dc.identifier.uri |
http://hdl.handle.net/11201/161404 |
|
dc.description.abstract |
[eng] We prove that any complex differential equation with two monomials of the form, with non-negative integers and, has one limit cycle at most. Moreover, we characterise when such a limit cycle exists and prove that then it is hyperbolic. For an arbitrary equation of the above form, we also solve the centre-focus problem and examine the number, position, and type of its critical points. In particular, we prove a Berlinskiĭ-type result regarding the geometrical distribution of the critical points stabilities. |
|
dc.format |
application/pdf |
|
dc.relation.isformatof |
Versió postprint del document publicat a: https://doi.org/10.1016/j.jmaa.2022.126663 |
|
dc.relation.ispartof |
Journal of Mathematical Analysis and Applications, 2023, vol. 518, num. 1, p. 1-16 |
|
dc.subject.classification |
51 - Matemàtiques |
|
dc.subject.classification |
004 - Informàtica |
|
dc.subject.other |
51 - Mathematics |
|
dc.subject.other |
004 - Computer Science and Technology. Computing. Data processing |
|
dc.title |
Uniqueness of the limit cycles for complex differential equations with two monomials |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:eu-repo/semantics/acceptedVersion |
|
dc.date.updated |
2023-08-02T06:56:33Z |
|
dc.date.embargoEndDate |
info:eu-repo/date/embargoEnd/2100-01-01 |
|
dc.embargo |
2100-01-01 |
|
dc.subject.keywords |
polynomial differential equation |
|
dc.subject.keywords |
Uniqueness of limit cycles |
|
dc.subject.keywords |
Centre-focus problem |
|
dc.rights.accessRights |
info:eu-repo/semantics/embargoedAccess |
|
dc.identifier.doi |
https://doi.org/10.1016/j.jmaa.2022.126663 |
|