iBoW-LCD: An Appearance-based Loop Closure Detection Approach using Incremental Bags of Binary Words

Show simple item record

dc.contributor.author García-Fidalgo, E.
dc.contributor.author Ortiz, A.
dc.date.accessioned 2024-01-16T09:07:23Z
dc.identifier.uri http://hdl.handle.net/11201/163608
dc.description.abstract In this letter, we introduce iBoW-LCD, a novel appearance-based loop-closure detection method. The presented approach makes use of an incremental bag-of-words (BoW) scheme based on binary descriptors to retrieve previously seen similar images, avoiding any vocabulary training stage usually required by classic BoW models. In addition, to detect loop closures, iBoW-LCD builds on the concept of dynamic islands, a simple but effective mechanism to group similar images close in time, which reduces the computational times typically associated with Bayesian frameworks. Our approach is validated using several indoor and outdoor public datasets, taken under different environmental conditions, achieving a high accuracy and outperforming other state-of-the-art solutions.
dc.format application/pdf
dc.relation.isformatof https://doi.org/10.1109/LRA.2018.2849609
dc.relation.ispartof Ieee Robotics And Automation Letters, 2018, vol. 3, num. 4, p. 3051-3057
dc.rights , 2018
dc.subject.classification Matemàtica
dc.subject.classification 004 - Informàtica
dc.subject.other Mathematics
dc.subject.other 004 - Computer Science and Technology. Computing. Data processing
dc.title iBoW-LCD: An Appearance-based Loop Closure Detection Approach using Incremental Bags of Binary Words
dc.type info:eu-repo/semantics/article
dc.date.updated 2024-01-16T09:07:24Z
dc.date.embargoEndDate info:eu-repo/date/embargoEnd/2100-01-01
dc.embargo 2100-01-01
dc.subject.keywords Mobilie robot localization
dc.subject.keywords visión robótica
dc.subject.keywords autonomous mobile robot
dc.subject.keywords Visión artificial
dc.subject.keywords mapa topológico
dc.rights.accessRights info:eu-repo/semantics/embargoedAccess
dc.identifier.doi https://doi.org/10.1109/LRA.2018.2849609


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics