Deep learning for detection and counting of Nephrops norvegicus from underwater videos

Show simple item record

dc.contributor.author Burguera, Antoni
dc.contributor.author Bonin-Font, Francisco
dc.contributor.author Chatzievangelou, Damianos
dc.contributor.author Vigo-Fernández, María
dc.contributor.author Aguzzi, Jacopo
dc.date.accessioned 2025-07-02T07:52:00Z
dc.date.available 2025-07-02T07:52:00Z
dc.identifier.citation Burguera, A., Bonin-Font, F., Chatzievangelou, D., Vigo-Fernández, M. i Aguzzi, J. (2024). Deep learning for detection and counting of Nephrops norvegicus from underwater videos. ICES Journal of Marine Science, 81(7), 1307-1324. https://doi.org/https://doi.org/10.1093/icesjms/fsae089 ca
dc.identifier.uri http://hdl.handle.net/11201/170598
dc.description.abstract [eng] The Norway lobster (Nephrops norvegicus) is one of the most important fishery items for the EU blue economy. This paper describes a software architecture based on neural networks, designed to identify the presence of N. norvegicus and estimate the number of its individuals per square meter (i.e. stock density) in deep-sea (350-380 m depth) Fishery No-Take Zones of the northwestern Mediterranean. Inferencing models were obtained by training open-source networks with images obtained from frames partitioning of in submarine vehicle videos. Animal detections were also tracked in successive frames of video sequences to avoid biases in individual recounting, offering significant success and precision in detection and density estimations. en
dc.format application/pdf en
dc.format.extent 1307-1324
dc.publisher ICES
dc.relation info:eu-repo/grantAgreement/AIE/10.13039/501100011033/Grant PID2020-115332RB/[/ES]
dc.relation.ispartof ICES Journal of Marine Science, 2024, vol. 81, num.7, p. 1307-1324
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject.classification 004 - Informàtica ca
dc.subject.classification 62 - Enginyeria. Tecnologia ca
dc.subject.other 004 - Computer Science and Technology. Computing. Data processing en
dc.subject.other 62 - Engineering. Technology in general en
dc.title Deep learning for detection and counting of Nephrops norvegicus from underwater videos en
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion
dc.type Article
dc.date.updated 2025-07-02T07:52:00Z
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/https://doi.org/10.1093/icesjms/fsae089


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search Repository


Advanced Search

Browse

My Account

Statistics