Addressing Multi-class Classification Tasks by means of RBFNN-like Models using Modular Indistinguishability Operators

Show simple item record

dc.contributor.author Ortiz, A.
dc.contributor.author Valero, O.
dc.date.accessioned 2025-10-03T09:36:41Z
dc.date.available 2025-10-03T09:36:41Z
dc.date.issued 2025-10-03
dc.identifier.citation Ortiz, A. i Valero, Ó. (2024). Addressing Multi-class Classification Tasks by Means of RBFNN-Like Models Using Modular Indistinguishability Operators. En C. Kahraman, S. Cevik Onar, S. Cebi, B. Oztaysi, A.C. Tolga, i I. Ucal Sari (Eds.) Intelligent and Fuzzy Systems. INFUS 2024 (pp. 304-312). Springer. https://doi.org/10.1007/978-3-031-67195-1_36 ca
dc.identifier.isbn 978-3-031-67194-4
dc.identifier.uri http://hdl.handle.net/11201/171516
dc.description.abstract [eng] As a machine learning model, a Radial Basis Function Neural Network (RBFNN) is an artificial neural network that comprises a single hidden layer whose neurons implement a set of radial-basis functions that are linearly combined at the output layer. The most popular form of RBFNN makes use of the Gaussian RBF combined with the Euclidean distance. In this work, we explore the use of Modular Indistinguishability Operators (MIO) in the hidden layer of RBFNN-like structures in replacement of Gaussian RBFs. Moreover, we introduce a new modular metric m(t, p, q) and next use it to derive a specific MIO IL(t, a, b) from the Luckasiewicz t-norm. The resulting MIO is next used as the activation function of the hidden neurons, whose parameters are determined on the basis of the samples of the underlying dataset. The performance of the new machine learning model is evaluated through a set of publicly available datasets in the context of multi-class classification tasks. en
dc.format application/pdf en
dc.format.extent 304-312
dc.language.iso eng
dc.publisher Springer de
dc.relation info:eu-repo/grantAgreement/EU/Horizon 2020 research and innovation programme/BUGWRIGHT2 (GA 871260)/[UE]
dc.relation info:eu-repo/grantAgreement/AEI/10.13039/501100011033//PID2022-139248NB-I00/[ES]
dc.relation info:eu-repo/grantAgreement/ERDF/A way of making Europe/PID2022-139248NB-I00/[EU]
dc.relation.ispartof Intelligent and Fuzzy Systems (INFUS 2024), 2024, p. 304-312 en
dc.relation.ispartofseries Lecture Notes in Networks and Systems; 1089 en
dc.rights all rights reserved
dc.subject 004 - Informàtica ca
dc.subject.other Multi-class Classification en
dc.subject.other RBF Neural Networks (RBFNN) en
dc.subject.other Modular Indistinguishability Operators (MIO) en
dc.title Addressing Multi-class Classification Tasks by means of RBFNN-like Models using Modular Indistinguishability Operators en
dc.type Book chapter
dc.type info:eu-repo/semantics/bookpart
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1007/978-3-031-67195-1


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics